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A PROGRAM FOR EQUILIBRIUM NORMAL SHOCK AND 

STAGNATION POINT SOLUTIONS FOR 

ARBITRARY GAS MIXTURES 

By Linwood B. Ca l l i s  and Jane T.  Kemper 
Langley Research Center 

SUMMARY 

A computer program wri t ten i n  FORTRAN I V  language i s  presented which y ie lds  
solutions f o r  flow parameters i n  a r b i t r a r y  equilibrium gas mixtures i n  the f o l -  
lowing s i tua t ions :  

(1) Behind a normal shock 

( 2 )  Behind a re f lec ted  normal shock 

(3 )  For in - f l i gh t  stagnation conditions 

( 4 )  For shock-tube stagnation conditions 

Program output parameters are pressure,  density,  enthalpy, entropy, compressi- 
b i l i t y ,  temperature, and mole f rac t ions  of t he  included chemical species, which 
may number up t o  t h i r t y .  For t rave l ing  normal and r e f l ec t ed  shocks, the flow 
veloci ty  and re f lec ted  shock ve loc i ty  a r e  a l so  presented as output. 

Equilibrium flow calculat ions a re  car r ied  out by u t i l i z i n g  a free-energy 
minimization technique coupled with the steady-flow conservation equations and 
a modified Newton-Raphson i t e r a t i v e  scheme. Chemistry up t o  second ionizat ion 
i s  included. 

Input required f o r  t h e  program i s  described and required physical constants 
f o r  computations involving 27 species of the argon, nitrogen, oxygen, and car- 
bon genre a r e  tabulated.  Cases may be run i n  sequence and any o r  a l l  of the 
aforementioned flow configurations may be included i n  a s ing le  case. 

Typical shock solut ions a r e  presented f o r  argon f r e e  a i r  and a model of the 
Mars atmosphere. A i r  solut ions of the  present work a r e  compared with those 
from the Avco Corporation and Space Technology Laboratories. 



INTRODUCTION 

Since the  advent of hypervelocity vehicles and tes t  f a c i l i t i e s ,  it has been 
necessary i n  the  solution f o r  normal shock and stagnation point conditions t o  
include the  e f f ec t s  of t he  complex chemistry associated with high-speed phenom- 
ena. Since the  equilibrium propert ies  of high-temperature a i r  a r e  w e l l  known 
( r e f s .  1 t o  6 ) ,  there  have been numerous solutions fo r  normal shock parameters 
i n  a i r  including s tagnat ion 'point  solutions (refs. 7 t o  12).  Methods of solu- 
t i o n  range from computer use of polynomial f i t s  of equilibrium thermodynamic 
data t o  hand calculations ( f o r  example, refs. 9 and 11, respect ively) .  

Recently, however, with the  advancing sophis t icat ion and success of plane- 
t a r y  probes it has become c lear  t h a t  programs should be avai lable  which a r e  
capable of determining thermochemical equilibrium shock parameters i n  a gas of 
a rb i t r a ry  composition. 
Corporation and u t i l i z e s  a free-energy minimization technique t o  get the  equi- 
librium composition of t h e  flow. This program, however, solves the  shock prob- 
lem inversely with values of temperature behind the  shock being required i n  
order t o  solve fo r  the remaining shock propert ies ,  including shock speed. 

One such program has been developed a t  t he  Avco 

It was believed by the  present authors t h a t  another useful  and somewhat 
more ve r sa t i l e  means of solution might be rea l ized  by combining free-energy 
minimization techniques with a d i r ec t  solution t o  the  normal shock problem. The 
RAND method (ref. 13) of equilibrium gas analysis  s t a t e s  the equilibrium problem 
simply and, when coupled with steepest  descent techniques, i s  well sui ted t o  
digital-computer use. This method i s  used i n  the  present program with t h e  con- 
servation equations and a modified Newton-Raphson i t e r a t i v e  scheme allowing 
d i r ec t  solutions f o r  thermodynamic and flow propert ies  behind t ravel ing and 
re f lec ted  normal shock waves and a t  in - f l igh t  and shock-tube stagnation points.  

The program i n  FORTRAN I V  language and the  required program input a re  
l i s t e d  i n  f u l l  d e t a i l  i n  appendixes A and B. Typical a i r  solutions a re  pre- 
sented and comparisons a re  made with solutions by Ziemer ( r e f .  11) and Laird 
and Heron ( ref .  12) .  
Martian atmosphere (NASA model 2, r e f .  14)  a r e  a l so  presented and compared with 
a i r  solutions.  

In  addition, r e su l t s  from normal shock solutions i n  a 

The present program i s  used i n  conjunction with an IBM 7040-7094 d i r ec t  
coupled system. It i s  referred t o  as problem 886.5 and i s  avai lable  from the 
Analysis and Computation Division a t  Langley Research Center, Langley Stat ion,  
Hampton , Virginia.  

SYMBOLS 

fT JfP 

H 

perturbation parameters used i n  stagnation point solution 

enthalpy 
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Us ,Ur 

u2 

X 

Z 

E s t  

P 

PO 

parameter defined by equation (16) 

charac te r i s t ic  distance 

molecular weight 

molecular weight of free-stream gas a t  300° K 

number density of e lectrons 

pressure 

universal  gas constant 

universal  gas constant divided by free-stream molecular weight 

nondimensional entropy 

parameter defined by equation ( 3 )  

parameter defined by equation (23) 

parameter defined by equation (24) 

temperature 

charac te r i s t ic  ve loc i ty  

incident and re f lec ted  shock velocity,  respectively 

flow veloci ty  behind t rave l ing  incident shock i n  laboratory 
c oordi na t  e s 

veloci ty  r e l a t i v e  t o  shock 

mole f rac t ion  

compressfbility fac tor ,  M l / M  

convergence c r i t e r i o n  i n  stagnation point solut ion 

den s i  t y  

density of standard atmosphere 
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Subscripts: 

1 

2 

3 

5 

s t  

sf 

(4 
P 

i 

j 

Superscripts: 

( k) 

charac te r i s t ic  t i m e ,  L/U 

spectroscopic constants 

conditions p r i o r  t o  shock 

conditions behind incident shock i n  shock tube 

conditions behind standing shock i n  shock tube 

conditions behind re f lec ted  shock 

shock-tube stagnation condition 

i n  - f li ght stagna ti on c ondi ti on 

r e fe r s  t o  minor i t e r a t i o n  i n  shock and stagnation routines 

par t icu lar  species (atom, molecule, ion, and electron)  i n  
f r e e  stream 

par t icu lar  species (atom, molecule, ion, and electron)  
behind shock 

pa r t i cu la r  elemental component (atomic elements and 
electrons)  

r e fe r s  t o  major i t e r a t i o n  i n  shock routine 

r e f e r s  t o  major i t e r a t i o n  i n  stagnation routine 

EQUILDRIUM PROPERTIES PROGRAM 

The normal shock problem i n  thermochemical equilibrium i s  simply solved 
provided there  i s  a straightforward means of handling the  necessary equilibrium 
calculations.  
of p and T, a constant-mass equilibrium mixture i s  so composed t h a t  i t s  
Gibbs f r e e  e n e r a  i s  a t  a minimum value. 
value i s  determined by making successive quadratic approximations t o  t h e  f r e e  
energy and using s teepest  descent techniques t o  converge upon a set of mole 
numbers yielding the  minimum t o t a l  f r e e  energy. 
l a t i o n  of the equilibrium problem f o r  an a rb i t r a ry  gas i n  d i r ec t  fashion and 
requires l i t t l e  o r  no chemical i n tu i t i on .  

The RAND method i s  based on the  pr inc ip le  t h a t  a t  given values 

The composition yielding t h i s  minimum 

This method permits t he  formu- 
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The equilibrium program used i n  t h e  present work, requiring p and T a s  
thermodynamic input,  i s  a version of t h e  RAND method and i s  embodied i n  work 
done by Allison (ref.  15). 
t i o n  technique i n  conjunction with t h e  p a r t i t i o n  function of quantum s t a t i s t i c a l  
mechanics t o  determine t h e  free energies and enthalpies of t he  individual 
species and the  equilibrium set of mole numbers (composition). 
done, thermodynamic parameters of i n t e r e s t  a r e  then determined. Assumptions 
involved i n  the  use of p a r t i t i o n  functions i n  th i s  analysis are a s  follows: 

This procedure u t i l i z e s  the  free energy minimiza- 

This being 

(1) For molecules the  r i g i d  ro tor  harmonic o s c i l l a t o r  model i s  used, 
account being taken of t h e  var ia t ion  of v ibra t iona l  and ro ta t iona l  constants 
due t o  d i f fe ren t  e lectronic  configurations. 

(2) Only electronic  l eve l s  of energy ( i n  t h e  f i rs t  f i v e  electron she l l s )  
lower than the  ionizat ion l i m i t  a r e  considered f o r  atoms and atomic ions.  

Effects  on thermodynamic propert ies  of v ibra t iona l  and ro ta t iona l  corrections 
t o  the  model proposed a re  i n  general small (approximately 1 percent or less a s  
shown i n  r e f .  15) and f o r  convenience a r e  neglected i n  the  present work. No 
fur ther  de t a i l s ,  other than the  equilibrium subroutine i t s e l f ,  a r e  presented 
herein on t h i s  method of equilibirum gas analysis .  Readers in te res ted  i n  these 
d e t a i l s  should r e fe r  t o  references 13 and 15. 

ITERATrvE SOLUTION FOR CONSERVATION EQUATIONS 

With an e f fec t ive  equilibrium program avai lable ,  consideration m u s t  now 
be given a s  t o  which method of solut ion of the  conservation equations i s  pref-  
erable,  the  d i r ec t  or inverse method. The d i r ec t  solution requires a s  input 
the  preshock flow conditions, including the  shock speed, and yields  conditions 
behind the  shock. The inverse solution requires  the  specif icat ion of T 
behind the  shock with t h e  subsequent solution f o r  t he  remainder of t he  condi- 
t i ons  both before and a f t e r  t h e  shock, including shock speed. The authors of 
t he  present report  believe t h a t  t h e  d i r ec t  method has more general u t i l i t y .  
Hence, t he  normal shock problem i s  approached i n  this fashion with t h e  a i d  of 
a modified Newton-Raphson i t e r a t i v e  technique ( r e f .  16) i n  conjunction with 
the  shock-fixed conservation equations. 

Incident Shock 

The conservation equations f o r  the  incident shock may be wr i t ten  a s  

5 
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- 
where u2 i s  the  ve loc i ty  behind the  shock r e l a t i v e  t o  it and values of T1, 
pl, and Us a re  specif ied i n  the  f r e e  stream. 

For values of T1 i n  excess of 8000 K, values of p1 and H1, t o  be used 
i n  equations (1) t o  ( 3 ) ,  are determined with the  a i d  of t he  equilibrium program. 
Species included i n  this calculat ion are those which a r e  t o  be considered behind 
the  shock. This technique makes possible the  generation of solutions with dis- 
sociating, high-temperature free streams. For lower values of T1,  the  equilib- 
r i u m  program i s  again used t o  determine p1 and HI; however, t he  only species 
considered a re  those present a t  a temperature of 300° K. 

Briefly,  t h e  i t e r a t i v e  solution proceeds a s  follows: 

(1) Assumed pLk) leads,  with t h e  a id  of equations (1) t o  ( 3 ) ,  t o  - 
L 

( k )  (k). I n  pr inciple ,  these two thermodynamic propert ies  allow the evalua- p2 JH2 
(k+l) 
2 which i s  used once again i n  equations (1) t o  ( 3 ) .  This pro- t i o n  of p 

cedure, which s h a l l  be re fer red  t o  a s  t he  major i t e r a t ion ,  i s  repeated t o  con- 
vergence, solving the  problem. I n  prac t ice ,  however, t h e  equilibrium program 
requires a p,T input making necessary the  Newton-Raphson i t e r a t i v e  procedure 
(hereinaf ter  ca l led  t h e  minor i t e r a t i o n )  i n  order t o  determine a value of 
T(k)  compatible with the  pressure and enthalpy solved f o r  i n  the major i t e r a -  

(n )  
(k+l) i s  determined p2 t i o n .  With this temperature, or an approximation t o  it, 

and the  procedure repeated u n t i l  t he  desired convergence between 

pp+l) i s  achieved. The superscript  (k) r e f e r s  t o  the  kth major i t e r a t i o n  and 

t h e  subscript  (n)  i s  associated with the  minor i t e r a t ions .  

(k )  and 
p2 

(2)  The recursive equations used i n  the  minor i t e r a t i o n  a re  

where 
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(1) 
( 0 )  

To begin this i t e r a t ion ,  it i s  necessary t o  input an estimated temperature 

and an i n i t i a l  temperature increment AT. The sum of these i s  given as 

T 

which i s  used i n  the  first approximation. Values of t he  enthalpy H(k)  i n  
(n)  

equations (4)  and ( 5 )  a re  determined from the  equilibrium program with p(k) 
2 

and T (k )  a s  input and a re  
(4 

a r e  values of t he  parameter 

computed with each successive value of T(k)  as 
(d 

S(k) given by equation ( 5 ) .  
(n>  

(3) The program i s  arranged so t h a t  f o r  k = 1 there  a r e  three minor 

i t e r a t i o n s  beginning with the  computations of an improved value of 

each successive value of k only one minor i t e r a t i o n  i s  made, use being made 
of t he  following re la t ions :  

T ( l )  For 
(1)' 

( k )  a r e  simply the  l a s t  values of these quant i t ies  com- and T l a s t  
( k )  

' last where 

puted during the  kth major i t e r a t i o n .  When the  f i n a l  value of T 

computed, T ( k )  and p2 (k) a re  used i n  the equilibrium program t o  evaluate 

has been (k)  
(n )  

(n)  
(k )  
2 (k+l) which i s  compared with p 

(k+l) i s  used i n  equations (1) t o  (3) t o  obtain (k+l) and H(k+l). The 

t o  determine whether t he  specified con- 
p2 

p2 p2 2 

vergence c r i t e r ion  has been sa t i s f i ed .  If the  c r i t e r ion  has not been sa t i s f i ed ,  

cycle i s  continued u n t i l  convergence requirements a re  sa t i s f i ed .  

Solutions t o  the  problem are presented with reference t o  a laboratory 
coordinate system. 
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One comment by way  of explanation should be made about t he  scheme of 
minor i t e r a t ions .  

(k)  completely compatible with p(k)  and H ( k )  i s  real ized.  These value of T 

i t e r a t ions  a re  truncated ea r ly  i n  favor of obtaining swif t ly  a value of 
2 .  

Experience has j u s t i f i e d  t h i s  procedure since it has been observed t h a t  t he  
major correction t o  the  estimated temperature occurs during the  f i rs t  three 
minor i t e r a t ions .  Subsequent i t e r a t i o n s  are refinements, eliminated i n  favor 
of determining a new approximation t o  the  density and continuing t h e  major 
i t e r a t ion .  
much a s  t h i s  accuracy i s  dependent on the  convergence c r i t e r ion  specif ied f o r  
successive values of p(k) .  

The minor i t e r a t i o n s  are not continued t o  the  point where a 

(n) 2 2 

p(k+l) 

This procedure has no bearing on the  f i n a l  accuracy achieved, inas- 

Reflected Shock 

The conservation equations fo r  t h e  r e f l ec t ed  shock may be wri t ten i n  
shock-fixed coordinates a s  

where a l l  ve loc i t ies  a re  r e l a t ive  t o  a laboratory reference system and condi- 
t i ons  behind the  incident shock will have been determined from the  incident 
shock program. 

For t he  sake of brevity,  it should suf f ice  t o  say t h a t  the major and minor 
i t e r a t i v e  schemes, including the  i n i t i a l  input,  a r e  iden t i ca l  i n  every d e t a i l  
t o  those f o r  t h e  incident shock. Only the  form of the  conservation equations 
t o  be used i n  the  major i t e r a t i o n  d i f f e r s  i n  t h e  two s i tua t ions .  For t h i s  
reason, no fur ther  comment on the  re f lec ted  shock solution i s  made except t o  
indicate  t h a t  r e s u l t s  a r e  presented i n  a laboratory reference frame. Such ref- 
erence r e s u l t s  i n  zero flow veloci ty  behind the  re f lec ted  wave, as expected. 

In-Fli  ght Stagnation Conditions 

In- f l igh t  stagnation conditions a re  determined by solving t h e  incident 
shock problem and locat ing a thermodynamic state point so t h a t  the  conditions 

8 



a re  sa t i s f i ed .  With the  present equilibrium program, equations (12) and (13) 
a re  achieved with t h e  grea tes t  f a c i l i t y  by means of a two-dimensional Newton- 
Raphson i t e r a t i v e  process. 
i s  presented a s  a series of comments or computational procedures, as  follows: 

This procedure, for purposes of brevi ty  and c l a r i t y ,  

(1) The se r i e s  of i t e r a t i o n s  i s  i n i t i a t e d  with the  following pressures 
and temperatures: 

where fp and f T  a re  small 
s c r i p t s  and subscripts within 

perturbation parameters required a s  input. 
parentheses r e fe r  respectively t o  the number of 

Super- 

- 

approximations t o  psf and the  number o f  i t e r a t ions  on temperature a t  constant 

p b )  * 

(2 )  By u t i l i z i n g  equations (14) when applicable and 

where 
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successive values of temperature a re  determined u n t i l  a value of 

reached so t h a t  

T(') i s  
l a s t  

where Est i s  a predetermined small quantity.  Entropy convergence according 
t o  

i s  a l s o  checked a t  t h i s  point i n  t h e  solution. 
stagnation-point conditions a re  determined. 
use the  following procedure. 

I f  condition (20) i s  met, the  
If convergence i s  not achieved, 

(3) Determine new values of p and T from 

where 
L J 
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(4)  With the  new values of pressure and temperature reenter  s tep  (2)  and 
continue the  cycle u n t i l  both enthalpy and entropy meet t h e  convergence tes t  
( e q s .  (19) and (20)) .  This procedure, then, satisfies requirements (12) and 
(13) t o  t he  desired degree of accuracy and the  problem i s  complete. 

A l l  values of enthalpy and entropy a r e  determined from t h e  equilibrium 
program. 

Shock-Tube Stagnation Conditions 

The solution for shock-tube stagnation conditions requires two incident 
shock solutions followed by a Newton-Raphson i t e r a t i o n  i n  two dimensions. The 
incident shock solution, described previously, y ie lds  solutions f o r  conditions 
which serve as input required t o  determine conditions behind the  standing shock. 
This solution, used once again, determines conditions behind t h e  standing shock 
which, when coupled with the  two-dimensional i t e r a t i o n  described i n  the  previous 
section, a r e  then used t o  determine a thermodynamic s t a t e  point so t h a t  

with t h e  required degree of convergence specif ied.  
t h i s  manner i s  tha t  of t he  shock-tube stagnation point.  

The solution reached i n  

The program, b r i e f l y  described i n  the  preceding sections,  i s  l i s t e d  i n  
FORTRAN I V  language i n  appendix A with a description and explanation of t h e  
input required given i n  appendix B. Appendix C presents a compilation of 
physical  constants, most of which may be found itemized with regard t o  t h e i r  
source i n  reference 15 and references 17 t o  20. These constants a r e  required 
by the  program f o r  use with the  27 chemical species indicated.  

LIMITATIONS 

Limitations on t h e  present normal shock program a re  those r e s t r i c t ions  
placed on the  equilibrium propert ies  program. It i s  recommended i n  reference 15 
t h a t  t he  present version of t h e  RAND method of computing the  equilibrium com- 
posi t ions be r e s t r i c t e d  t o  pressures below lo2 atmospheres; thus,  real-gas 
e f f ec t s  manifested a t  higher pressures a re  avoided. Such e f f ec t s ,  f o r  a i r ,  are 
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taken i n t o  account i n  t h e  work of Lewis and Burgess (ref.  7) ,  which allows 
consideration of pressures several  orders of magnitude higher than the  upper 
l i m i t  suggested f o r  t he  present work. 

The present equilibrium program i s  va l id  down t o  pressures a t  which t h e  
assumptions inherent i n  t h e  theory of s t a t i s t i c a l  thermodynamics begin t o  f a i l .  
However, when a flow process i s  considered, pressures mus t  be such t h a t  t h e  
response times of thermodynamic parameters t o  a change i n  condition must be 
much smaller than t h e  charac te r i s t ic  time T associated with the  problem. 
Such decisions are l e f t  t o  t h e  discret ion of t h e  individual  invest igator .  

Temperatures considered must be such t h a t  only negl igible  contributions 
a r e  real ized from coulomb in te rac t ions  and from electronic  energy leve ls  past  
t he  f i f t h  e lectron she l l ,  both these considerations being unaccounted f o r  i n  
the  equilibrium program. The l a t t e r  consideration proves t o  be no problem f o r  
temperatures below 15 0000 K; however, t h i s  temperature cannot be sa id  t o  be a 
lower universal  l i m i t  f o r  t h e  neglect of coulomb e f f ec t s .  
depend, i n  addition t o  temperature, on the  pressure and t h e  gas mixture con- 
sidered. 
depending on the  pa r t i cu la r  circumstances a t  hand. 

These e f f ec t s  

The problem therefore  becomes one f o r  t he  individual invest igator  

COMPARISON OF SOLUTIONS 

A s  an indication of t h e  v e r s a t i l i t y  and va l id i ty  of the  present computer 
program, comparisons a re  made with the  work of Laird and Heron ( r e f .  12) and 
Z i e m e r  (ref.  11). 

In  figure 1, the  flow configurations used i n  this study a re  i l l u s t r a t e d .  
I n  f igures  2 t o  5 normal shock propert ies  i n  argon f r e e  and carbon f r ee  a i r  a s  
determined from the  present program a re  compared with those of Laird and Heron 
( r e f .  12). The i n i t i a l  mixture considered, a t  p1 = 76 and 10-3 em Hg and 
TI = 300' K, w a s  composed of 21.153 percent 02 and 78.847 percent N2 by volume. 
Species considered were NO+, NO, 02+, 02, N*+, N2,. O', O+, Of+, 0, p, N+, N, 
e-, N20 excluding N- which was included i n  reference 12. Figures 2 t o  5 ind i -  
ca te  excellent agreement, s m a l l  discrepancies being noted i n  T and p f o r  
T > 18 000' K. These cliscrepancies, however, remain below 3 percent. Although 
only data f o r  t he  incident shock and the  shock-tube stagnation conditions a r e  
shown, standing shock and re f lec ted  shock data compare equally w e l l .  

I n  f igures  6 and 7, comparisons a re  shown between the  data of Ziemer 
( r e f .  11) and data from the  present program i n  which the  previously described 
a i r  model was used. The data of Ziemer was generated by using a graphical rep- 
resentation of t he  equilibrium a i r  analysis  of reference 1. The comparisons, 
which a re  made f o r  incident and re f lec ted  shock data,  a t  two i n i t i a l  pressures 
and T 1  = 273.2O K, show considerably la rger  discrepancies i n  T and p than 
t h e  Avco data,  sometimes reaching 12 percent. These discrepancies, previously 
pointed out by Hoshizaki (ref.  21),are a t t r i bu ted  t o  e r rors  i n  Z i e m e r ' s  data 
which, according t o  Ziemer,have an estimated accuracy of 1 t o  10 percent. 

12 



No comparisons, f o r  i d e n t i c a l  flow conditions, have been made of solutions 
discussed i n  t h e  present sect ion.  
required between references 11 and 12 would only compound ex is t ing  
discrepancies. 

It was believed t h a t  t h e  interpolat ion 

I n  f igure  8, a comparison i s  made between the  incident  shock propert ies  of 
t he  present a i r  model and a Martian atmosphere ( W A  model 2, r e f .  14 ) .  The 
Mars atmosphere consis ts  of an i n i t i a l  mixture of 10.8 percent C02 and 89.2 per- 
cent N2 by volume. Species considered i n  the  Martian atmosphere were N ,  N+, 
e, 0, O', Ow, O', C ,  C+, C*, C', N2, N2+, 02, 02+, NO, NO+, CO, CO', CN, 
C02,  e-. 
p1  = 10-1 atmosphere and T 1  = 273.2O K. 

I n i t i a l  conditions of both mixtures were taken t o  be 

Final ly ,  comparisons made i n  reference 15 of equilibrium a i r  propert ies  
a s  generated by the  present equilibrium program with the more rigorous data of 
Gilmore ( r e f .  1) and Browne ( r e f .  22) generally agree within 1 percent f o r  
1000° K 5 T 5 25 OOOo K and 5 p/po = 10. 

CONCLUDING REMARKS 

The present program has proved capable of accurately determining both flow 
and thermodynamic parameters behind incident and r e f l ec t ed  shock waves and a t  
stagnation points  fo r  both in - f l i gh t  and shock-tube thermochemical equilibrium 
flow. Capable of handling a r b i t r a r y  free-stream mixtures and gas chemistry 
(up t o  second ioniza t ion) ,  t he  solut ion provides a convenient means of solving 
d i r e c t l y  f o r  the flow parameters i f  the  free-stream pressure,  temperature, 
veloci ty ,  and composition a r e  given. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va., October 6, 1963. 



APPENDIX A 

PROGRAM FOR CALCULATION OF NORMClL SHOCK AND STAGNATION-POINT CONDITIONS 

The program for calculating flow parameters in thermochemical equilibrium 
for normal shock and stagnation-point conditions in arbitrary gas mixtures was 
written in FORTRAN IV language for the IBM 7094 electronic data processing 
system. This program including subroutines and comments is reproduced in the 
following pages. 

14 
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S I B F T C  P8865 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

C 

C 

P-886 5 
NORMAL SHOCK PROGRAM 
PROGRAMMED F O R  T H E  I B M  7094 

Y I E L D I N G  S O L U T I O N S  FOR FLOW P A R A M E T E R S  I N  A R B I T R A R Y  G A S  
M I X T U R E S  I N  THE F O L L O W I N G  S I T U A T I O N S -  

1 * B E H I N D  NORMAL SHOCK 
2. B E H I N D  A R E F L E C T E D  NORMAL SHOCK 
30 F O R  I N  F L I G H T  S T A G N A T I O N  C O N D I T I O N S  
40 F O R  SHOCK T U B E  S T A G N A T I O N S  C O N D I T I O N S  

D I M E N S  I O N  C P  ( 5 )  r R E T A  ( 5 )  r AM ( 5  ) * C O D E  (30 ) r  S H B L  (8 1 r R E B L  (8  1 rSTBL (8 1 r 
1 S T S B L  (8 1 r N B T A  ( 5 )  

D I M E N S I O N  T E M P ( 5 )  
D I M E N S I O N  Y S A V E ( 3 0 )  

E Q U I L I B R I U M  I N P U T  

COMMON 
COMMON 
COMMON 
COMMON 
COMMON 

SHOCK 

COMMON 

OMEGIFICAPMIA 
G r S M A L E  
C O N H ~ C O N K r C O N R r C O N P R F I C O N N O I N I M I L I N I T  
E P S  1 r E P S 2  r C A P L A Y  
D H F O r A M C r  I C l r Y S T O  

PROGRAM I N P U T  

PlOrTlOrUSrRH02rEPS5rNBrCPrBETArAMrTPrDELTrITrNBTA 

R E F L  I N P U T  

COMMON T R r R H O R  

S T A G  I N P U T  

COMMON F P r F T r E S  

S T - S T A G  I N P U T  

COMMON T S T A G r R H O S  

COMMON SHBLISTBLISTSBLIREBL~SOR~X 

WRITE (6r200) 
200 F O R M A T ( l H l r 2 0 H  E Q U I L I B R I U M  P R O G R A M / / 2 7 H  J A N E  K E M P E R  F O R  L I N  C A L L I S  
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1/ /30H J .  0. R G H - 1 2 5  PROB. NO. 886.5///) 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THE F I R S T  N+ l  D A T A  CARDS C O N T A I N  I N F O R M A T I O N  ( I N  COLUMNS 1 - 6 1  
I D E N T I F Y I N G  E A C H  O F  T H E  N S P E C I E S .  T H E  F I R S T  C A R D  I S  N ( C O L a  1-3) 

R E A D ( 5 * 2 0 5 ) N C O O E  
205 F O R M A T ( I 3 )  

R E A D ( S r 2 0 6 ) ( C O D E ( I ) r I = l r N C O D E )  
206 FORMAT ( 1 A 6  1 

L O A D  INPUT A L L  D A T A  ( A F T E R  F I R S T  N + l  C A R D S )  I S  O N  D E C  CARDS 
L A S T  C A R D  IS F O L L O W E D  8 Y  A I R A  2 r 4  C A R D  

1 C A L L  L O A D ( N E R R )  

NERR C O N T A I N S  L O A D I N G  CODE 
= 1  P R O P E R  L O A D I N G -  COMPUTE 
=2 ERROR. C A R D  I N  ERROR W I L L  BE P R I N T E D 9  E X I T  
= 3  E N D  O F  F I L E *  E X I T  

I F  ( N E R R - 2  14 9 3 r 2 
2 C O N T I N U E  
3 C A L L  E X I T  
4 N=N 

R E A D  ( 5 r 2 0 5 ) I T E S T  

I T E S T  C O N T A I N S  CODE F O R  O P T I O N S  ( P U N C H E D  I N  C O L D  3 O N  C A R D  
F O L L O W I N G  T R A  C A R D  A F T E R  L A S T  D A T A  C A R D )  

P O S S I B L E  O P T I O N S  
0 I N C I D E N T  SHOCK O N L Y  
1 I N C .  AND R E F L E C T E D  SHOCKS 
2 I N C .  AND FREE S T R E A M  S T A G N A T I O N  
3 1NC.r F R E E S T R E A M  S T A G * *  A N D  R E F L .  
4 I N C .  A N D  SHOCK T U B E  S T A G N A T I O N  
5 1NC.r SHOCK TUBE STAG. AND R E F L .  
6 INC.9 SHOCK T U B E  A N D  F R E E S T R E A M  S T A G N A T I O N  
7 1NC.r SHOCK T U B E  S T A G * *  F R E E S T R E A M  STAG.  AND R E F L .  

M=M 
C A L L  S L I T E ( 0 )  
R H 0 1 0 = P 1 0 / ( T 1 0 / 3 0 0 ~ ) * ~ 0 4 0 6 1 9 * A M C  
D O  5 I = l r N B  
I l = N S T A ( I )  

5 T E M P ( I ) = C O D E ( I l )  
W R I T E ~ 6 r 4 0 0 0 ~ R H 0 1 0 ~ P l O r U ~ ~ T l O * ~ T E M P ~ I ~ ~ I ~ l ~ N B ~  

4000 F O R M A T ( l H 1 2 5 H  I N P U T  F O R  I N C I D E N T  S H O C K / / 8 H  RHO-1 = E 1 5 0 8 r 2 X r  
15HP-1 = E 1 5 . 8 r 2 X r 3 H U S = E 1 5 . 8 r 2 X r 5 H T - I  =E15*8 / /5H  B E T A / / ( 5 ( 9 X * l A 6 r Z X )  

2 )  1 
W R I T E ( 6 r 4 0 0 1 )  ( B E T A (  I ) *  I = l r N B )  

W R I T E ( 6 r 4 0 0 2 ) R H 0 2  
4001 F O R M A T ( 5 E 1 7 . 8 )  

16 
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4002 
C 

3004 
C 
C 
C 
C 
C 
C 

3003 
3005 

C 
C 
C 

3035 
3006 

3007 
C 
C 
C 

C 
C 
C 

C 

C 

4003 

F O R M A T ( / / i 3 H  ASSUMED R H o = E l 5 * d )  
C O N V E R S I O N  
P l O = P 1 0 + 1 ~ 0 1 3 2 5 E 6  
R H 0 1 0 = R H 0 1 0 + 1 o E - 3  
R H 0 2 = R H 0 2 * 1  *E-3 
U S = U S * 3 0 * 4 8  
DO 3004 I=l tN 
Y S A V E ( 1  ) = Y S T O ( I )  

I F  T I 0  L E S S  T H A N  800 DEGREES K E L V I N 9  COMPUTE E N T H A L P Y  ( H 1 0 )  
FROM F R E E S T R E A M  C O M P O S I T I O N  ( U S I N G  S U B R O U T I N E  E C O M )  

I T E R A T I V E L Y  U S I N G  S U B R O U T I N E  ECOM 
I F  T 1 0  GREATER T H A N  800. DEGREES9 S O L V E  F O R  E N T H A L P Y  

I F ( T 1 O  -800* )3003r3003r3006 
DO 3005 I = I * N  
Y S T O (  I )=Om 

S E N S E  L I G H T  4 U S E D  T O  S I G N A L  S U B R O U T I N E  ECOM 

C A L L  S L I T E ( 4 )  
DO 3035 I = I t N B  
J = N S T A (  I ) 
Y S T O ( J ) = B E T A ( I  ) / A M C  
C = 2 0 9 9 7 9 3 E 1 0  
C A L L  E C O M ( T 1 0 ~ P 1 0 ~ 0 0 Z ~ H O Z R T ~ H l O * R H O I O )  
DO 3007 I=l r N  
Y S T O ( 1  ) = Y S A V E ( I )  

STORE I N I T I A L  PITIRHOIAND U I N  S H B L ( 1 - 4 )  

S H B L ( 1  ) = P 1 0  
S H B L  ( 2  1 = T  10  
S H D L ( 3 ) = R H O I O  
S H B L ( 4 ) = U S  
C A L L  S H O C K ( T P I O O Z I H O Z R T I H ~ ~ S H B L I H ~ O ~ ” )  

U P O N  R E T U R N  S H B L ( 5 - 8 )  C O N T A I N S  P 2 9 T 2 9 R H 0 2 9 A N D  UF 

W R I T E ( 6 9 4 0 0 3 ) U P R I N T t N N  
F O R M A T ( / / / / 7 H  O U T P U T / / 5 H  U2 = E 1 5 . 8 r 2 0 X * 2 5 H N O *  O F  M A J O R  I T E R A T I O N S  

1 = I 3 )  
C 

2050 W R I T E ( 6 r 2 0 2 ) P P R I N T ~ S H B L ( 7 ) * O O Z * H O Z R T * S O R * S H ~ L ( 6 ) * A M C  
202 F O R M A T ~ / / 9 X ~ 1 H P ~ 1 3 X ~ 3 H R H O t 1 4 X 1 3 H 1 / Z 1 1 4 X ~ 5 H H / Z R T ~ l 2 X ~ 3 H S / R ~  

114X~lHT*16X*2HM1//(7E17*8)) 
W R I T E ( 6 r 2 2 1  1 
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221 F O R M A T ( / / 2 3 H  F I N A L  X FROM ITERATIONt4X*7HSPECIES//) 
W R I T E ( 6 1 2 2 0 ) ( X ( I  ) t C O D E ( I  ) r I = l t N )  

220 F O R M A T ( E 1 7 * 8 r l O X t l A 6 )  
C 
C 
C 

C 
C 
C 

9 
10 

105 
1 1  

1 2  

C 

C 

C 
15 

4004 

C 
C 
C 

C 
C 
C 

5 0 0 3  

STORE S / R  F O R  S T A G  AND S T S T A G  S U B R O U T I N E S  

S T B L ( J ) = S O R  

T E S T  F O R  A D D I T I O N A L  O P T I O N S  

I F  ( I T E S T  1 1  1 1 1 1 0  
1c=1 

I F  ( I T E S T - I C  1 1  1 1 1  t 1 2  
GO TO (15r20*15r25r25t25r25)*IC 

I C =  I C + I  
GO TO 1 0 5  

W R I T E ( 6 1 4 0 0 4 ) R H O R  
F O R M A T ( l H 1 1 1 6 H  R E F L E C T E D  S H O C K / / 1 7 H  ASSUMED RHO Z E 1 5 . 8 )  
R H O R = R H O R + l e E - 3  

STORE P 2 1 T 2 1 R H 0 2 1  AND UF I N  Q E B L ( 1 - 4 )  

R E E L ( I ) = S H E L ( S )  
R E E L  ( 2  1 = H 2  
R E E L  ( 3  ) = S H E L  ( 7  ) * I  E - 3  
R E E L  (4 = S H E L  ( 8 )  
C A L L  R E F L ( T R I O O Z I H O Z R T I N N )  

UPON R E T U R N  R E B L ( 5 - 8 )  C O N T A I N S  PRITRIRHORIAND UR 

U P R I N T = R E B L ( 8 ) / 3 0 * 4 8  
P P R I N = R E E L ( S ) / C O N P R F  
W R I T E ( 6 r 5 0 0 3 ) U P R I N T 1 N N  
F O R M A T ( / / / 7 H  O U T P U T / / 5 H  U - R = E 1 5 * 8 t 2 0 X 1 2 5 H N O *  O F  MAJOR I T E R A T I O N S  = 

1 1 3 )  
C 

W R I T E ( ~ ~ ~ ~ ~ ) P P R I N I R E E L ~ ? ~ ~ O O Z ~ T ~ S O R I R E ~ L ~ ~ ~ ~ A M C  
W R I T E ( 6 1 2 2 1  
WRITE(6r220)(X(I)tCODE(I)~I=ltN) 
I T E S T z I T E S T - I  
GO TO IO 

W R I T E ( 6 1 5 0 0 4 ) H S * S T E L ( 3 )  
20 H S = H l O + ( S H B L ( 4 ) * * 2 ) / 2 .  

5004 F O R M A T ( l H l r 7 6 H  I N  F L I G H T  S T A G N A T I O N  P O I N T  D A T A  IS COMPUTED FROM T 
1 H E  I N C I D E N T  SHOCK O U T P U T / / 2 2 H  S T A G N A T I O N  E N T H A L P Y  = E 1 5 * 8 1 5 X t  
2 2 0 H S T A G N A T I O N  E N T R O P Y  = E 1 5 . 8 / / / / / )  

C 
C STORE P21 AND T 2  I N  S T B L ( 1 - 2 )  * H 2  I N  S T B L ( 4 )  

18 



APPENDIX A 

C 
S T B L ( 1  ) = S H B L ( 5 )  
S T 3 L ( 2 l = S H B L ( 6 )  
S T B L  ( 4  1 =H2 
C A L L  S T A G ( H S I O O Z I H O Z R T I R H O I S T B L I ” )  

C 
C UPON R E T U R N  S T B L ( 5 - 8 )  C O N T A I N S  P-ST I  T -ST I  S / R - S T I  AND H - S T  
C 

P P R I N = S T B L ( S ) / C O N P R F  
W R I T E ~ ~ ~ ~ ~ ~ ~ ~ P P R I N ~ S T B L ~ ~ ) ~ “ I O O Z I H O Z ~ H O Z R T ~ R H O I S T B L ~ ~ ~ ~ S T B L ~ ~ ~  

5005 F O R M A T ( / / / 7 H  O U T P U T / / l S H  P R E S S U R E  = E 1 5 0 8 r 1 8 H  T E M P E R A T U R E  = 
l E 1 5 0 8 r 2 2 X 1 2 5 H N O .  OF MAJOR I T E R A T I O N S  = I 3 / / 6 H  1 / Z  = € 1 5 0 8 1 5 X 1  
X 7 H H / Z R T  = E 1 5 0  
2 8 r 5 X t 5 H R H O  = E 1 5 0 8 r 5 X r 5 H S / R  = E 1 5 * 8 1 5 X * 3 H H  = E 1 5 0 8 1  

W R I T E ( 6 t 2 2 1  
W R I T E ( 6 r 2 2 0 ) ( X ( I ) r C O D E ( I ) r I = l r N )  
I T E S T = I T E S T - 2  
GO TO 10 

c 
C 
C 
C 
C 
C 
C 

25 

5006 

TO COMPUTE T H E  SHOCK T U B E  S T A G N A T I O N  P O I N T  P R O P E R T I E S 9  S U B R O U T I N E  
SHOCK I S  U S E D  FOR T H E  S T A N D I N G  SHOCK DATA. T H E N  S U B R O U T I N E  
S T A G  COMPUTES T H E  S T A G N A T I O N  P O I N T  DATA. 

STORE P 2 r T 2 9 R H 0 2 r  AND UF I N  S T S B L ( 1 - 4 )  

S T S B L ( 1  ) = S H B L ( 5 )  
S T S R L  ( 2  ) = S H B L  (6 ) 
S T S B L ( 3 ) = S H B L ( 7 ) * 1 o E - 3  
RHOE=RHOS*’ I  E-3 
S T S B L ( 4 ) = S H B L ( B )  
C A L L  S H O C K ( T S T A G ~ O O Z I H O Z R T ~ H S T S B L I H ~ ~ ” )  
H S = H 2 + ( S H R L ( 8 ) * * 2 ) / 2 .  
P P R I N T = S T S B L ( S ) / C O N P R F  

VR I T E  ( 6  95036 1 
F O R M A T ( l H l 9 8 4 H  SHOCK T U B E  S T A G N A T I O N  P O I N T  D A T A  IS COMPUTED FROM T 

U P R I N T = S T S B L ( 8 ) / 3 0 . 4 8  

1 H E  F O L L O W I N G  S T A N D I N G  SHOCK D A T A )  
W R I T E ( ~ ~ ~ ~ ~ ) P P R I N T I S T S B L ( ~ ) ~ O O Z ~ ~ O Z ~ H O Z R T ~ S O R ~ S T S B L ( ~ ) ~ A M C  
W R I T E ( 6 r 5 0 0 7 ) H S  

5007 F O R M A T ( / / 3 9 H  SHOCK T U B E  S T A G N A T I O N  P O I N T  E N T H A L P Y  = E 1 7 0 8 / )  
C 
C STORE PITI AND H V A L U E S  FROM SECOND E N T R Y  I N T O  I N C I D E N T  SHOCK 
C S U B R O U T I N E  I N  S T S B L ( 1 - 2 9 4 )  
C 
C STORE S / R - 2  I N  S T S B L ( 3 )  
C 

S T S B L  ( 1 1 = S T S B L  ( 5 )  
S T S B L ( 2 ) = S T S B L ( 6 )  
S T S B L ( 3 ) = S O R  
S T S B L  ( 4  ) = H S T  
C A L L  S T A G ( H S ~ O O Z ~ H O Z R T I R H O ~ S T S B L , ” )  
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C 
C U P O N  R E T U R N  S T S B L ( 5 - 8 )  C O N T A I N S  P - S T S r  T - S T S r  S / R - S T S r  A N D  H - S T S  
C 

P P R I N T = S T S B L ( 5 ) / C O N P R F  
W R I T E ~ 6 r 5 0 0 5 ~ P P R I N T r S T S B L ~ 6 ~ r N N r O O Z r H O Z R T r R H O r S T S B L ~ 7 ~ r S T S B L ~ 8 ~  
W R I T E ( 6 r 2 2 1  1 
W R I T E ~ 6 r 2 2 0 ~ ~ X ~ ~ ~ t C O D E ~ I ~ r I = l t N ~  
I T E S T z I T E S T - 4  
GO T O  10 
E N D  

B I B F T C  SHOCK 

C 
C T H I S  S U B R O U T I N E  U S E S  A O N E - D I M E N S I O N A L  NEWTON-RAPHSON I T E R A T I O N  
C SCHEME T O  F I N D  TEMPERATURE AND P R E S S U R E  A T  E Q U I L I B R I U M  B E H I N D  
C I N C I D E N T  SHOCK. I T  W I L L  C A L L  S U B R O U T I N E  ECOM TO COMPUTE T H E  
C E Q U I L I B R I U M  P R O P E R T I E S .  
C 
C H10 IS I N I T I A L  E N T H A L P Y  
C TGUESS I S  T E M P E R A T U R E  E S T I M A T E  
C E L O C K ( 1 - 4 )  C O N T A I N S  I N I T I A L  P ~ T I D E N S I T Y  A N D  V E L O C I T Y  
C F I N A L  V A L U E S  OF P t T r D E N S T I Y  AND V E L O C I T Y  S T O R E D  I N  B L O C K ( 5 - 8 )  
C E N T H A L P Y  S T O R E D  A T  H2 
C NCOUNT I S  A N  I T E R A T I O N  COUNT 
C 1 / 2 9  H / Z R T  S T O R E D  I N  OOZ AND H O Z R T  
C 
C 

S U B R O U T I N E  SHOCK(TGUESS~OOZrHOZRTrH2~BLOCKrHlOrNCOUNT) 

D I M E N S  I O N  OMEG (5r 30 r 30 1 r F  ( 3 0  r CAPM ( 3 0  1 * A  ( 10 r 3 0  1 tL ( 30 r 
1 G ~ 3 0 t 3 0 ~ r S M A L E ~ 3 0 r 3 O ~ r X o r C A P L A M ( 3 0 r 3 0 ~ r D H F 0 ~ 3 0 ~ r Y S T 0 ~ 3 0 ~  

l N B T A  ( 5  1 
DIMENSION C P ( ~ ) , B E T A ( S ) . A M ( S ) ~ ~ ~ ~ L ( B ) ~ S T B L ( ~ ) ~ S T S B L ( ~ ) ~  

D I M E N S I O N  T ( 2 ) r H ( 2 ) r B L O C K ( B )  
COMMON O M E G r F r C A P M r A  
COMMON G r S M A L E  
COMMON CONHrCONKrCONRrCONPRFrCONNOrNrMrLrNIT 
COMMON 
COMMON D H F O r A M C r  I C l r Y S T O  
COMMON P10rT10tUStRH02rEPS5rNBrCPrEETArAMrTPrDELTrITrNaTA 
COMMON T R r R H O R  

E P S  1 r EPS2 r C A P L A M  

20 
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C ~ M M O N  F P ~ F T ~ E S  
COMMON T S T A G t R H O S  

C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 

C 
C 
C 

r 

7 

8 

85 

9 

COMMON S H B L t S T B L t S T S B L t R E B L t S O R t X  

L E T  R H 0 2  = F I R S T  RHO 

V E L  1 ( AA ) =C*D/AA 
P R E S l ( A A r B B ) = B + C * D * * 2 - A A * B B * * 2  
ENTHl(AA)=HlO+(D**2)/2.-(AA**2)/2. 
NCOUNT = 1 
B = B L O C K  ( 1 ) 
C = B L O C K ( 3 )  
D = B L O C K  ( 4  1 
u2 = V E L  1 ( R H 0 2  1 
P 2 = P R E S l ( R H 0 2 r U 2 )  
H 2 Z E N T H  1 (U2 1 

COMPUTE F I R S T  P O I N T  

I T T = I T  
T ( 1 ) = T G U E S S  
C A L L  ECOM(T(l)~P2tOOZtHOZRTtH(l)tRHO) 

COMPUTE SECOND P O I N T  

TEMPERATURE FROM F I R S T  I T E R A T I O N  

s I S  S L O P E  ( H 2 - H l  ) / ( T 2 - T 1  ) 

T E M P E R A T U R E  FROM SECOND I T E R A T I O N  

T ( 2  
H ( l  ) = H ( 2 )  
I F ( T ( 2 1 1 2 5 r 2 5 r 9  
C A L L  ECOM(T(2)tP2rOOZtHOZRTtH(2)tRHO) 

= T  ( 2  )+  ( H 2 - H  ( 2  1 )/S 
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C I F  I T T  IS GREATER T H A N  2 9  I T E R A T E  A G A I N  ON T E M P E R A T U R E  W I T H  
C F I R S T  P R E S S U R E  
C 

I F ( I T T - 2 ) 1 0 ~ 1 0 * 1 1  
10 S L A S T = ( H ( E ) - H ( l  1 ) / ( T ( 2 ) - T ( l ) )  

T L A S T = T  ( 2  
GO TO 1 2  

C 
11  I T T z I T T - 1  

GO TO 85 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 

1 2  

13 

14 
145 

15 

C 
C 
C 

20 

C 
C 
C 

25 

T E S T  RHO F O R  CONVERGENCE 

I F ( A B S (  ( R H O - R H 0 2 ) / R H 0 2 ) - E P S 5 ) 2 0 * 2 0 * 1 3  

NON-CONVERGENCE- 

COMPUTE NEW P R E S S U R E  AND C O N T I N U E  I T E R A T I O N  ON TEMPERATURE AND 
P R E S S U R E  U N T I L  RHO CONVERGES 

RHO2=RHO 
U 2 = V E L  1 ( R H O 2  1 
P 2 z P R E S  1 ( R H O 2  r U2 ) 
H 2 = E N T H 1  ( U 2 )  
N C O U N T = N C O U N T + l  
T ( 1 = T L A S T  

S = S L  AS T 
C A L L  E C O M ( T ( l ) r P 2 ~ 0 0 Z ~ H O Z R T ~ H ~ l ~ ~ R H O )  

T ( 2 ) = T ( l ) + ( H 2 - H ( l ) ) / S  
C A L L  E C O M ( T ( 2 ) r P 2 r O O Z * H O Z R T I H ( 2 ) r R H O )  
S L A S T = ( H ( 2 ) - H ( l  ) ) / ( T ( 2 ) - T ( l ) )  
T L A S T = T  ( 2  
GO TO 12 

CONVERGENCE - STORE OUTPUT 

U 2 = V E L I  (RHO 1 
U F = U S - U 2  
RHO=RHO* I  .E3 
B L O C K  ( 5  1 =P2 
B L O C K ( 6 ) = T L A S T  
B L O C K ( 7 ) = R H O  
B L O C K  (8 1 =UF 
R E T U R N  

TEMPERATURE E S T I M A T E  TOO H I G H  - A D J U S T  

T G U E S S = ( T G U E S S - T 1 0 ) / 2 .  
GO TO 7 

Er\rO 
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S I B F T C  R E F L  
S U B R O U T I N E  REFL(TGUESSrOOZrHOZRTrNC0UNT) 

C 
C 
C 
C 
C 
C 

C 

C 

C 
C 
C 

C 
C 

C 

T H I S  S U B R O U T I N E  U S E S  A O N E - D I M E N S I O N A L  NEWTON-RAPHSON I T E R A T I O N  
SCHEME T O  F I N D  T E M P E R A T U R E  A N D  P R E S S U R E  A T  E Q U I L I B R I U M  BEHIND 
REFLECTED SHOCK. IT wru. CALL SUBROUTINE ECOM TO COMPUTE THE 
E Q U I L I B R I U M  P R O P E R T I E S .  

D I M E N S I O N  O M E G ~ 5 r 3 0 r 3 0 ~ r F ~ 3 0 ~ t C A P M ~ 3 O ~ r A ~ l O ~ 3 O ~ r L ~ 3 O ~ r  
1 G ~ 3 @ r 3 0 ~ r S M A L E ~ 3 0 r 3 O ~ r X o r C A P L A M ( 3 0 r 3 0 ~ ~ D H F 0 ~ 3 0 ~ ~ Y S T 0 ~ 3 0 ~  

D I M E N S I O N  C P  (5 ) * B E T A  ( 5  ) r AM ( 5  ) I SHBL (8 1 r R E B L  (8 ) r S T B L  (8 1 r S T S B L  (8 ) r 
1 N B T A  ( 5 ) 

D I M E N S I O N  T ( 2 ) r H ( 2 )  

COMMON O M E G t F r C A P M r A  
COMMON G r S M A L E  
COMMON CONHrCONKrCONRrCONPRF~CONNOrNrMrLrNIT 
COMMON E P S l r E P S 2 r C A P L A M  
COMMON D H F D r A M C r  I C l * Y S T O  
COMMON PlOrTlOrUSrRH02rEPS5rNBrCPrBETArAMrTPrDELT~IT~NBTA 
COMMON T R r R H O R  
COMMON FPIFT IES 
COMMON T S T A G r R H O S  

COMMON SHBLtSTBLrSTSBLrREBLrSORrX 

L E T  RHOR = F I R S T  RHO 

V E L ( A A ) = C * D / ( A A - C )  
P R E S ( A A * B B ) = B + C * ( A A + D ) * * Z ! - B B * A A * * 2  
E N T H ( A A ) = E + . 5 * ( D + A A ) * * 2 - * 5 * A A * * 2  
NCOUNTZ 1 
B = R E B L  ( 1 1 
C = R E R L  ( 3 )  
D = R E B L  (4 ) 
€ = R E E L  ( 2  ) 
U R = V E L ( R H O R )  

H R = E N T H ( U R )  
P R Z P R E  S ( UR r RHOR ) 

COMPUTE F I R S T  P O I N T  

23 
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C 

C 
c 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

c. 

7 T ( 1 = T G U E S S  
C A L L  E C O M ( T ( l ) r P R . O O Z ~ H O Z R T I H ( l ) r R H O )  

COMPUTE SECOND P O I N T  

T ( 2 ) = T ( 1  )+DELT 
C A L L  E C O M ( T ( ~ ) ~ P R I O O Z I H O Z R T I H O ~ R H O )  

S IS S L O P E  ( H 2 - H l  ) / ( T 2 - T 1  1 

T E M P E R A T U R E  FROM F I R S T  I T E R A T I O N  

TEMPERATURE FROM SECOND I T E R A T I O N  

I F  I T T  IS G R E A T E R  T H A N  2 9  I T E R A T E  A G A I N  ON T E M P E R A T U R E  W I T H  
F I R S T  P R E S S U R E  

I F ( I T - 2 ) 1 0 1 1 0 .  1 1  
1 0  S L A S T = ( H ( 2 ) - H ( l  ) ) / ( T ( 2 ) - T ( l  1 )  

T L A S T = T  (2.) 
GO TO 12 

C 
1 1  I T T z I T T - I  

GO TO 85 
c 
C 
C 

T E S T  RHO F O R  CONVERGENCE 

1 2  I F  ( A B S  ( (RHO-RHOR ) / R H O R  I - E P S S  1 2 0 .  20.13 

NON-CONVERGENCE- 
COMPUTE NEW P R E S S U R E  AND C O N T I N U E  I T E R A T I O N  ON TEMPERATURE AND 

P R E S S U R E  U N T I L  RHO CONVERGES 

1 3  RHOR=RHO 
U R = V E L  RHOR 1 



C 
C 
C 
C 

20 

c 
C 
C 

25 

PR=PRES (URI RHOR j 
H R = E N T H  ( U R )  
N C O U N T = N C O U N T + l  
T ( 1  ) = T L A S T  

S = S L A S T  
T ( 2 ) = T ( 2 ) + ( H R - H ( 2 ) ) / S  

S L A S T = ( H ( E ) - H ( l  ) ) / ( T ( 2 ) - T ( l  1 )  
T L A S T = T  ( 2  1 
GO T O  12 

C A L L  E C O M ~ T ( l ) r P R ~ 0 0 Z r H O Z R T I H o r R H O )  

C A L L  E C O M ( T ( 2 ) ~ P R ~ O O Z ~ H O Z R T . H o r R H O )  

CONVERGENCE - STORE O U T P U T  

U R = V E L ( R H O )  

R E E L  ( 5  1 = P R  
R E B L ( B ) = T L A S T  
R E E L  (7 ) =RHO 
R E B L ( 8 ) = U R  
R E  T U R N  

RHO=RHO* l .E3  

TEMPERATURE E S T I M A T E  TOO H I G H  

TGOESS= ( T G U E S S - T  1 0  / 2 .  
GO T O  7 
E N D  

- A D J U S T  

A I B F T C  S T A G  

c 
C T H I S  S U B R O U T I N E  U S E S  A TWO D I M E N S I O N  NEWTON-RAPHSON I T E R A T I O N  
C SCHEME TO COMPUTE F R E E S T R E A M  OR SHOCK T U B E  S T A G N A T I O N  P O I N T  
C P R E S S U R E  A N D  T E M P E R A T U R E  G I V E N  S T A G N A T I O N  E N T R O P Y  AND E N T H A L P Y .  
C T H I S  R O U T I N E  C A L L S  S U a R O U T I N E  ECOM T O  COMPUTE E Q U I L I B R I U M  PRO-  
C P E R T  I E S  
C 
C HS C O N T A I N S  S T A G N A T I O N  E N T H A L P Y  
t B L O C K ( 1 - 4 )  C O N T A I N S  I N I T I A L  V A L U E S  O F  PITIS/RI A N D  H 
c F I N A L  PITIS/RI AND H A R E  STORED I N  R L O C K ( 5 - 8 )  
C NN IS A N  I T E R A T I O N  COCJNT 
c l / Z r  H / Z R T  AND D E N S I T Y  STORED I N  0021 H O Z R T ~  AND RHO 

S U B R O U T I N E  S T A G ( H S ~ O O Z r H O 2 R T r R H O t B L O C K I " )  

25 
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C 

C 

C 

C 

C 

C 
c 
C 
C 
C 
C 
C 
C 

C 

5 

15 

10 

D I M E N S I O N  OMEG(5r30r30)rF(30)rCAPM(3O~rA(lOr3O~*L(3O~r 
1 G ~ 3 0 r 3 0 ~ ~ S M A L E ~ 3 0 ~ 3 O ~ r X o r C A P L A M ~ 3 0 r 3 0 ~ r D H F 0 ~ 3 0 ~ * Y S T 0 ~ 3 0 ~  

D I  MENS I O N  C P  ( 5  ) 9 B E T A  (5 ) * A M  ( 5  ) *CODE (30 1 r SHBL (8 r R E S L  (8 1 r S T B L  (8 ) r 
l S T S B L ( B ) * N B T A ( 5 1  

D I MENS 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 

COMMON 

I R = O  
NN=I 

SCHEME 

[ O N  T ( 2  ) r H ( 2  ) r P ( 2  I S R  ( 2  1 * B L O C K  (8 ) 
OMEG rF r CAPM * A 
G r S M A L E  
CONH~CONK~CONRrCONPRFrCONNOrNrM~LrNIT 
E P S l r E P S 2 r C A P L A M  
D H F O r A M C r  I C l t Y S T O  
PIOrTIOrUStRH02rEPSS~NB*CPrBETArAMrTPtDELT* I T r N B T A  
T R  * RHOR 
FPr F T  r ES 
T S T A C r R H O S  

S H B L r S T B L v S T S B L r R E B L t S O R l X  

I N S I D E  LOOP- I T E R A T E  O N  T U N T I L  E N T H A L P Y  ( H )  CONVERGES 
O U T S I D E  L O O P -  I T E R A T E  O N  P U N T I L  E N T R O P Y  ( S / R )  CONVERGES 

F I R S T  P R E S S U R E  CURVE 

SORS=BLOCK ( 3 )  
P ( 1  ) = B L O C K ( I  1 
T ( 1  ) = B L O C K ( 2 )  
SORS=BLOCK ( 3  1 
H ( 1  ) = B L O C K C 4 1  
T ( 2 ) = T ( 1  ) + T ( 1  ) + F T  
C A L L  ECOM ( T  ( 2  P ( 1 ) r 0021 H O Z R T r  H ( 2  r RHO ) 
S =  ( H ( 2  1 - H (  1 1 ) / ( T ( ? ) - T (  1 ) ) 

T ( l ) = T ( 2 )  
T ( 2 ) = T ( 1  ) + ( H S - H ( 2 )  ) / S  
H ( 1  ) = H ( 2 )  

S= ( H  ( 2  1-H ( 1 1 ) /  ( T  ( 2  ) - T  ( 1 1 f 
T ( 1  ) = T ( 2 )  
H ( 1  ) = H ( 2 )  

C A L L  E C O M ( T ( 2 ) r P ( I ) r O O Z r H O Z R T t H ( 2 ) r R H O )  

R E L = A B S ( H ( E ) - H S ) / H S  
IF ( R E L - E S  ) 1 5 9  15 r 10 
R E L = A B S  ( (SORS-SOR ) / S O R S  
I F ( R E L - E S ) 1 0 O r l O O t 2 0  
T ( 2  ) = T  ( 1 ) +  ( H S - H  ( 2  ) 1 / S  
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C 
C 
C 

20 

23 
C 
C 
C 

24 

24 1 
242 

c 
C 
C 

25 

C 
C 
C 

30 

C 
C 
C 

35 

C 
C 
C 
C 

100 

eb r6 5 

SECOND P R E S S U R E  CURVE 

S R ( 1  ) = S O R  
S L A S T = S  
T L A S T = T  ( 2  ) 
P ( 2 ) = P ( l ) + P ( l ) + F P  
T ( l  ) = B L O C K ( 2 )  
T(2)=T(I)+(HS-H(l))/SLAST 

TWO D I M E N S I O N A L  I T E R A T I O N  L O O P  

C A L L  E C O M ( T ( 2 ) r P ( 2 ) r O O Z * H O Z R T r H ( 2 ) * R H O )  
I F ( I R l 2 4 1 r 2 4 1  r 2 4 2  
S L A S T = ( H ( 2 ) - H ( l )  ) / ( T ( 2 ) - T ( l )  1 
H ( 1  ) = H ( 2 )  
I R = O  
R E L z A B S  ( (HS-H ( 2  1 ) /HS ) 

I F ( R E L - € S ) 3 0 r 3 0 r 2 5  

H NON-CONVERGENT9 C O N T I N U E  I T E R A T I O N  ON T 

T ( 1  ) = T ( 2 )  
GO TO 23 

H C O N V E R G E S *  T E S T  S / R  

SR ( 2  ) = S O R  
R E L = A B S (  ( S O R S - S R ( 2 )  ) / S O R S )  
I F ( R E L - E S ) l O 0 ~ 1 0 0 ~ 3 5  

S / R  NON-CONVERGENT - ADJUST P AND T AND C O N T I N U E  I T E R A T I O N S  

S P = ( S R ( 2 ) - S R ( l )  ) / ( P ( 2 ) - P ( l  ) )  

ST=(SR(2)-SR(l))/(T(2)-TLAST) 
P ( 1  ) = P ( 2 )  
T L A S T = T  ( 2  
T ( l  ) = T ( 2 )  
P ( 2 ) = P ( I ) + ( S O R S - S R ( 2 )  ) / S P  
T ( 2 ) = T ( 2 ) + ( S O R S - S R ( 2 ) ) / S T  
S R ( 1  ) = S R ( 2 )  
NN=NN+l 
I R = l  
GO TO 24 

S / R  CONVERGES - S T O R E  OUTPUT 

B L O C K ( S ) = P ( E )  
B L O C K  ( 6 1 = T  ( 2 ) 
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B L O C K  (7 ) =SR ( 2  1 
B L O C K  (8 1 =H 2 ) 

C 

c. 
RHO=RHO* l .EJ  

R E T U R N  
END 

B I B F T C  ECOM 
S U B R O U T I N E  E C O M ( T ~ P S T O ~ O O Z I H O Z R T ~ H * R H O )  

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

S U B R O U T I N E  W H I C H *  G I V E N  A T E M P E R A T U R E  AND P R E S S U R E *  COMPUTES 
T H E  THERMODYNAMIC E Q U I L I t I R I U M  P R O P E R T I E S  O F  A G A S  D E S C R I i 3 E D  B Y  
T H E  INPIJT.  

T - T E M P E R A T U R E  
P S T O  - P R E S S U R E  
002 - 1/z 
H O Z R T  - H / Z R T  
H - E N T H A L P Y  
RHO - D E N S I T Y  

MOLE F R A C T I O N S  ( X ( 1 ) )  STORED I N  COMMON 

COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 

OMEGIFICAPMIA 
G 9 S M A L E  
C O N H r C O N K r C O N R  

CONPRF r CONNO r N r M  r L  r N I T  
E P S l t E P S 2 * C A P L A M  
D H F O r A M C r I C l r Y S T O  
P ~ O ~ T ~ O I U S ~ R H O ~ ~ E P S ~ ~ N ~ ~ C P ~ B E T A ~ A M ~ T P ~ D E L T ~ I T ~ N ~ T A  
T R  r RHOR 

28 
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~ O M M O N  F P ~ F T ~ E ~ S  
COMMON T S T A G  r RHOS 

COMMON 

P I = 3 * 1 4 1 5 9  
C z 2 e 9 9 7 9 3 E 1 0  
NCOUNT = 0 
L T E S T = L T E S  T 

c 

C 
S H R L  r S T B L  r S T S B L  r R E E L  r SOR X 

N2=N 
DO 5 I = l r N  

5 Y ( I ) = Y S T O ( I  1 
P = P S T O  

34 TK=CONK*T  
R T  = CONR*T 

D O  347 I = l r N  

DO 40 I = l r N  

346 YBAR=OeO 

347 Y B A R = Y B A R + Y ( I )  

T E M P 1  =O 
LEND=L( I )  
DO 37 L l z l r L E N D  
I F ( F ( 1  1 1 3 1  9 3 5 9 3 1  

3 1  P R O D = l  
D O  33 I C = l r I C l  
IF(OMEG(I~rLlrI))32r33t32 

32 PROD=PROD*(1a-€XP(-CONH*C*OMEG(ICrLlr I ) / T K ) )  
33 C O N T I N U E  

P A R T = ( T / ( C A P L A M ( L l r I  ) * P R O D ) ) * * F ( I )  
GO T O  36 

35 P A R T z I e  
36 Q I N T ~ L l r I ) ~ P A R T * G ~ L l r I ) + E X P ( - C O N H + C w S M A L E ~ L l r I ~ / T K ~  
37 T E M P l = T E M P l + Q I N T ( L l r I )  

Q(I)~(SQRT(2e*PI/CONH*TK/(CONh~~CONNO~*CAPM~I~~**3~*TK/CONPHF*TEMPl 
I F ( Y ( I ) / Y B A R ) 3 8 * 3 8 r 3 9  

38 C A P F I ( I ) = O  
GO T O  40 

39 C A P F I ~ I ~ = Y ~ I ) * ~ A L O G ~ P / C O N P R F ~ + A L O G ~ Y ~ I ~ / Y B A R ~ - A L O G ~ Q ~ I ~ ~ + D H F O ~ I )  

40  C O N T I N U E  
1 / R T )  

C 
C S E N S E  L I G H T  4 O N  - D O  N O T  I T E R A T E  
C S E N S E  L I G H T  4 O F F  - I T E R A T E  
C 

C A L L  S L I T E T ( 4 r J J )  
GO T O  ( 9 5 r 3 9 6 ) r J J  

396 DO 50 J = ~ * M  
DO 50 K = l r M  
R ( K r  J ) = O m 0  
R (  J ) = O e O  
DO 50 I = l r N  
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C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
c 

C 
C 
C 

C 
C 
C 

C 
C 
C 

S E T  UP M A T R I X  F O R  S O L U T I O N  O F  E Q U A T I O N S  

DO 60 J = l r M  
TEMPS ( J  )=000 
DO 55 I = l r N  

55 TEMPS(J)=TEMPS(J)+A(Jrl)*CAPFI(I) 
BSUM ( J r  1 1 =B ( J  ) + T E M P S  (J 1 

CONSTANT TERMS I N  BSUM B L O C K  

DO 56 K = l r M  
K l  = K + 1  

56 A B L O C K ( J r K l ) = R ( K * J )  

P I  TERMS I N  A B L O C K  I N  COLUMNS 2 THROUGH N + l  

( X / Y )  TERMS I N  F I R S T  COLUMN 

M I = M + I  

DO 61 K = I r M l  
A B L O C K ( M 1  r l  )=000 

K 1  = K + 1  
61 A B L O C K ( M l r K 1  ) = B ( K )  

B S I J M ( M 1  r 1 )=000 
DO 62 I = l r N  

62 B S U M ( M 1  r l  ) = B S U M ( M l  r l  ) + C A P F I  ( I  1 

M A T I N V  E X P E C T S  A N  M+1 B Y  M + l  M A T R I X  

C A L L  M A T I N V ~ A B L O C K ~ l t l ~ r M l r ~ S U M ~ l r l ~ r l r D E T E R M r I P I V O T r I N D E X r l l r O ~  

R E T U R N  W I T H  ANSWERS I N  BSUM 

Z E T A P = B S U M ( l t l ) * Y B A R  
ZFRO=O 
NEG=O 0 
DO 70 I = l r N  
P T E M P ( I ) = O e O  
DO 65 J = l r Y  
J 1  = J + 1  

65 P T E M P ( I ) = P T E M P ( I ) + B S U M ( J l t l ) + A o + Y ( I ) * Y ~ I ~  
Z E T A ( I ) = - C A P F I ( I ) + Y ( l ~ * ~ S U M ~ l r l ~ + P T ~ M P ~ l ~  

T E S T  F O R  N F G A T I V E  OR ZERO Z E T A  

68 I F ( Z E T A ( I ) ) 6 9 r 6 9 5 r 7 0  
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69 

69 1 

692 

695 
70 

C 
C 
C 

698 
699 

700 
7 1  

73 

72 

74 

745 
75 

76 

765 

77 

80 
805 

78 

C 
c 
C 

81 
815 

81 3 

P t E c E = - v i r ) / t i ~ r ~ c ~ ) - ~ ~ r ) )  
I F ( P I E C E ) 6 9 1 * 6 9 2 r 6 9 1  
NEG=NEG+I  
A L A M ( N E G ) = P I E C E  
GO T O  70 
Y (  I ) = o  
Z E R O = l  
GO T O  70 
I F ( Y ( I )  ) 69 r70 r69  
C O N T I N U E  

F I N D  G R E A T E S T  N E G A T I V E  Z E T A - Y  

I F ( Z E R 0 ) 7 0 0 r 7 0 0 r 6 9 8  
I F  (NCOlJNT-N I T )699 r 100  r I00 
NCOUNT=NCOUNT+I  
GO T O  346 
I F ( N E G - I  1 7 8 - 7 1  9 7 3  

A L A M P R = o 9 9 9 9 9 9 * A L A M ( l )  
GO T O  745 
A R G l  = A L A M  ( 1 ) 

A R G 2 = A L A M ( I )  
A R G I z A M I N I  ( A R G I  r A R G 2 )  
C O N T I N U E  
A L A M P R = o 9 9 9 9 9 9 * A R G I  
I I C = O  
Z E T A P = O  
DO 76 I=l r N  
Z E T A P R C  I ) = Y ( I  ) + A L A M P R * ( Z E T A ( I ) - Y ( I  1 )  
Z E T A P = Z E T A P + Z E T . a P R  ( I ) 

DLAM=O 
DO 77 I = l r N  
I F ( Z E T A P R ( 1  ) / Z E T A P ) 7 7 * 7 7 9 7 6 5  
D L A M = C L A M + ( Z E T A ( I  )-Y(I))*(ALOG(P/CONPRF)-ALOG(Q(I) )+DHFO( I ) / R T + A L O  

DO 74 I = E r N E G  

I G ( Z E T A P R ( 1  ) / Z E T A P ) )  
CONT I NUE 
I F  ( D L A M  )81 181 r 8 0  
I F (  I I C - 3 ) 8 0 5 * 8 1  r 8 1  
I I C = I  I C + l  
A L A M P R = A L A M P R * o 9  
GO T O  75 
A L A M P R =  1 
GO T O  745 

CONVERGENCE TEST F O R  Y ( I  IS 

I F  ( ALAMPR-  0 50 )83 r 81 5 -8 1 5  
DO 82 I = l r N  
IF(ZETAPR(I))813r816r813 
R E L = Y (  I ) - Z E T A P R ( I )  
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I F ( A B S ( R E L ) - E P S 1 ) 8 1 8 r S l e r B 3  
818 R E L = Z E T A P R ( I ) / Y ( I  1 - 1 0  

I F ( A B S ( R E L ) - E P S 2 ) 8 2 r 8 2 t 8 3  
816 I F ( Y ( 1 )  )817r829817 
817 GO T O  83 

82 C O N T I N U E  
C 
C Y ( I ) S  CONVERGE 
C 

DO 800 I = l r N  
800 Y ( I ) = Z E T A P R ( I )  

GO T O  95 
C 
C NON-CONVERGENCE O F  Y ( I  IS  
C 

83 NCOVNT=NCOUNT+ 1 
IF(NCOUNT-NIT)84rlOOtlOO 

84 D O  85 I = l r N  
85 Y ( I ) = Z E T A P R ( I )  

C 
C R E P E A T  W I T H  NEW Y ( I  IS  AND NO. O F  I T E R A T I O N S  LESS T H A N  N I T  
C 

GO T O  346 
95 DO 2 0 1  I z 1 . N  

X ( I ) = Y  ( I ) * C A P M  ( I ) 

CAPM I =0 

Y B A R = Y B A R + Y ( I )  

201 
YBAR=O 0 

D O  2026 I = l r N  

2026 CAPMI=CAPMI+X(I)/CAPM(I) 
C A P M I = l o O / C A P M I  
Z=AMC/CAPM I 
ESIJM=O 

QSUM=O 
D Q I N T ( I ) = O  
L E N D = L (  I )  
DO 2028 L l z l r L E N D  
SUM=O 
DO 2027 I C = l r I C l  
HOOTK=CONH*C*OMEG ( I C  tL 1 9 I 1 / T K  
I F ( O M E G ( I C ~ L l t I ) ) 2 0 O O t 2 ~ 2 7 * 2 0 ~ @  

DO 2029 I = l r N  

2000 SUM=SUM+HOOTK/(EXP(HOOTK~-Io) 
2027 C O N T I N U E  

l / ( T K * T )  1 
D Q I N T ~ I ~ ~ D Q I N T ~ I ~ + Q I N T ~ L l r I ~ ~ ~ F ~ I ~ / T * ~ l o + S U M ~ + S M A L E ~ L l r I ~ * C O N H * C  

2028 Q S U M = Q S U M + Q I N T ( L l r I  1 

2029 E S U M = E S U M + X ( I  ) + E ( I )  
E (  I ) = I o / C A P M ( I  ) * ( 1 ~ 5 * R T + R T * T / Q S U M + D Q I N T (  I ) + D H F O (  I ) )  

H O Z R T = C A P M I * E S U M / R T + I o O  
H=HOZRT*CONR*T*Z/AMC 
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T K = f  
FSUM=O 
DO 2040 I = l r N  

2033 I F ( Y ( I ) / Y B A R ) 2 9 3 4 r 2 0 3 4 r 2 0 3 5  
2034 C A P F I  ( I )=O 

GO T O  2040 
2035 C A P F I ~ I ~ ~ Y ~ I ) * ~ A L O G ~ P / C O N P R F ~ + A L O G O / Y ~ A R ~ - A L O G ~ Q ~ I ~ ~ ~ D H F O ~ I ~  

2040 F S U M = F S U M + C A P F I  ( I ) 
1 / R T  1 

SOZR=HOZRT-CAPMI*FSUM 
SOR=SOZR*Z  
R H O = P * C A P M I / R T  
U = C A P X + . 4 3 4 2 9 * A L O G ( % 7 3 b ~ 6 / ( Z * T ) )  

DO 300 I = l r N  

R E T U R N  

ooz=1 bO/Z 

300 X ( I ) = X ( I ) + C A P M I / C A P M ( I )  

1 0 0  W R I T E ( 6 r 5 0 0 0 )  

C A L L  E X I T  
E N D  

5000 F O R M A T ( I H O r 2 5 H  T H I S  C A S E  NON-CONVERGENT)  

B I B M A P  SYMBOL 150 
* 
* S U B R O U T I N E  W H I C H  D E F I N E S  I N P U T  A N D  I T S  STORAGE F O R  T H E  
* L O A D I N G  R O U T I N E  ( P W - L O A D )  
* 

E N T R Y  S Y M B O L  
SYMBOL RCI 1 r OMEG 

P Z E  OMEG 
B C  I 1 r F  
P ZE F 
B C  I 1 r CAPM 
P Z E  CAPM 
B C  I 1 r A  
P ZE A 
B C  I 1 tG 
P Z E  G 
B C  I 1 r S M A L E  
P Z E  S M A L E  
B C  I 1 * C O N H  
PZE CONH 
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B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
BC I 
P ZE 
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
PZE 
B C  I 
PZE 
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
RC I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 
P Z E  
B C  I 

1 4  CONK 
CONK 
1 r CONR 
CONR 
1 r C O N P R F  
C O N P R F  
1 r CONNO 
CONNO 
1 rN 
N 
1 r M  
M 
1 r L  
L 
1 * N I T  
N I T  
1 r E P S  1 
E P S  1 
1 r E P S 2  
E P S E  
1 r C A P L A M  
C A P L A M  
1 r DHFO 
DHFO 
1 r AMC 
AMC 
1 r I C 1  
I C 1  
1 r Y S T O  
Y S T O  
1 r P l O  
P 1 0  
1 r T l O  
T 1 0  
1 * u s  
us 
1 r R H 0 2  
R H 0 2  
1 t E P S 5  
E P S 5  
1 rNB 
NB 
1 r C P  
C P  
1 * B E T A  
B E T A  
1 * A M  
A M  
1 r T P  
T P  
1 r D E L T  
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I 

A P P m I X  A 

b Z  
ec I 
P ZE 
ec I 
PZE 
B C  I 
P ZE 
ec I 
PZE 
ec I 
PZE 
ec I 
P ZE 
ec I 
P ZE 
ec I 
P ZE 
ec I 
P ZE 
H T R  

// C O N T R L  
OMEG COMMON 
F COMMON 
CAPM C9MMON 
A COMMON 
G COMMON 
S M A L E  COMMON 
CONH COMMON 
CONK COMMON 
CONR COMMON 
CONPRF COMMON 
CONNO COMMON 
N COMMON 
M COMMON 
L COMMON 
N I T  COMMON 
E P S l  COMMON 
F P S 2  COMMON 
C A P L A M  COMMON 
DHFO COMMON 
AMC COMMON 
I C 1  COMMON 
Y S T O  COMMON 
P r o  COMMON 
T 1 0  COMMON 
I J  S COMMON 
R H 0 2  COMMON 
E P S 5  COMMON 
Ne COMMON 
C P  COMVON 
B E T A  COMMON 

b E i t  
1r1t 
I T  
1 r N B T A  
N B T  A 
1 r T R  
T R  
1 *RHOR 
RHOR 
1 r F P  
FP 
1 r F T  
F T  
1 r E S  
ES 
1 r T S T A G  
T S T A G  
1 * R H O S  
R H O S  
** 
// 
4500 
30 
30 
300 
90 0 
900 
1 
1 
1 
1 
1 
1 
1 
30 
1 
1 
1 
900 
30 
1 

1 
30 
1 
1 
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AM 
T P  
D E L T  
I T  
N B T A  
TR 
RHOR 
FP 
F T  
E S  
T S T A G  
RHOS 
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COMMOY 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
E N D  

5 
1 
1 
1 
5 
1 
1 
1 
1 
1 
1 
1 
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PROGRAM I N P U T  

The input necessary t o  u t i l i z e  the  included program i s  presented i n  t h i s  
appendix. The species i n  t h e  undissociated f r e e  stream m u s t  be assigned a 
value of t he  subscript  p beginning with unity.  Similarly,  t he  species t o  be 
considered (atoms, molecules, ions,  o r  e lectrons)  i n  the  dissociated mixture 
m u s t  be assigned a value of t h e  subscript  i, whereas each elemental p a r t i c l e  
(atomic pa r t i c l e  o r  e lectron)  i s  given a value of the  subscript  j .  
i f  considered as a species, must be assigned the  value of 1 for the  sub- 
s c r i p t  i. The program as it present ly  stands i s  l imited t o  the  consideration 
of t en  elements with f i v e  species i n  t h e  undissociated f r ee  stream and t h i r t y  
species i n  the  dissociated mixture. The capacity of t he  program with regard 
t o  the  number of species considered i s  eas i ly  increased by changing per t inent  
dimension statements. 

Electrons, 

A description of addi t ional  input required by t h e  program i s  given i n  t h e  
following tab le  : 



w aJ Input Program symbol Description Unit 

f i 

M i  

c th  charac te r i s t ic  vibrat ional  frequency of l t h  e lectronic  leve l  of 
i t h  species = o+ - +xe) 

I n i t i a l  guess, not equal t o  zero, f o r  mole number of i t h  species - 3 

"i j 

g i  2 

E i l  

h 

em-1 

k 

A 

Excitation energy of l t h  e lectronic  leve l  i n  i t h  species 

Planck's constant 

NA I 

cm-1 

erg-sec 

n I 

Avogadro' s number 

Number of species i 

Number of types of atoms j appearing i n  mixture (exclude ions) m 

x i  
N i t  

p a r t i  cles/mole 

€1 I 

Ai1 I 

F 

EPSl 

ms2 

CAPLAM 

sa t i s fy ing  b j  = l a i j y i  where b j  = $ l $ j p p ,  the  product 

Boltzmann constant 

Universal gas constant 

Reference pressure 

ergs/% 

ergs/mole -OK 

me s / em2 



w 
v) 

Fraction required for  incrementing temperature i n  stagnation point 
solution; normally 5 x 10-5 

Convergence c r i te r ion  foI; entropy and enthalpy i n  stagnation point 
solution; normally 10- 

' Am0 Standard heat of formation a t  Oo K of i t h  species 

P5e 

3 e  

P3e 

M 1  

C 

b 

Mp 
AT 

It 

"PP 

fP 

f T 

f s t  

TSTAG Estimated temperature behind standing shock OK 

RH@ Estimated density behind standing shock ' Nondimensional 

AMC 

I C 1  

BETA 

AM 

DELT 

I T  

I 
NBTA 

Fp 

FT 

ES 

Molecular weight of free-stream gas a t  300° K 

M a x i m  number of e ' s  for  2th leve l  of i t h  species ( re fers  t o  q z C  
for  triatomic species) 

Mole f ract ion of pth species i n  free-stream gas a t  3000 K 

Molecular weight of pth species i n  f ree  stream 

Temperature increment f o r  incident and ref lected shock solutions; 
normally loo K 

Option code for  additional i t e ra t ion  on temperature i n  incident and 
ref lected shock subroutines; normally 3 

Value of i assigned t o  pth species i n  dissociated mixture 

Flow input I 

ergs/mole 

grams/mole 

grams/mole 

OK 

' P10 Free-stream pressure 
p1 , 

I 
atmospheres 
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Once the  input has been determined f o r  a given i n i t i a l  mixture and species 
t o  be considered, duplication f o r  solutions with varying flow conditions, such 
a s  i n i t i a l  pressure, temperature, and shock speed, i s  not necessary. Computa- 
t i ons  involving these var ia t ions require  only the  respecif icat ion of quant i t ies  
given i n  the  foregoing t a b l e  under Flow input.  Similarly, i f  it i s  desired t o  
determine the  e f f ec t  on the  solution of one of the  species constants, such as 
the  heat of formation of t h a t  species, it i s  necessary t o  change only t h a t  
value. 
made, it i s  necessary t o  reestimate values of 
and mass balance constraints  a re  sa t i s f i ed .  

However, i f  changes i n  the  mole f rac t ions  of t he  i n i t i a l  mixture are 
t o  insure t h a t  t he  charge yi 

Input Loading and Comments 

The input i s  loaded by a symbolic loader routine,  LOAD. Subroutine SYMBOL 

Any su i tab le  routine may be used t o  enter  t he  input by 
describes the  input,  giving i t s  symbolic name, number of locat ions required, 
and location i n  COMMON. 
appropriately modifying statement 1 i n  the  main program. 

For purposes of output, n + 1 cards a re  read i n t o  the  program i n  f ront  
of the  data t o  iden t i fy  the  n species i n  the  shock processed mixture. Card 1 
contains the  number n (co ls .  1 t o  3 )  and cards 2 through n + 1 contain 
alphabetic ident i f ica t ion  of t h e  species (co ls .  1 t o  6)  - f o r  example, N 2 0 ,  02, 
and A*. 

After a l l  t h e  data a r e  loaded, the  program reads one card (co ls .  1 t o  3 )  
containing a numeric code f o r  computing option desired: 

0 - incident shock only 

1 - incident and re f lec ted  shocks 

2 - incident shock and in - f l i gh t  stagnation conditions 

3 - incident and re f lec ted  shocks, and in - f l i gh t  stagnation 
conditions 

4 - incident shock, and shock-tube stagnation conditions 

5 - incident and re f lec ted  shocks, and shock-tube stagnation 
conditions 

6 - incident shock, shock-tube and in - f l i gh t  stagnation 
conditions 

7 - incident and re f lec ted  shocks, shock-tube and in - f l i gh t  
stagnation conditions 

The program a l s o  uses a routine MATINV t o  solve a matrix equation, 
where A i s  a square coeff ic ient  matrix and B i s  a matrix of constant vectors. 
Reference t o  t h i s  routine i s  found i n  subroutine ECOM following statement 62. 

AX = B, 
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The ca l l ing  sequence of t h i s  routine i s  shown and b r i e f l y  described a s  follows 
i n  order t o  allow replacement by a similar routine,  i f  necessary: 

ABLOCK - t he  first location of two-dimensional array of 
matrix A 

M l  - t he  locat ion of order of A, 1.5. Mls 11 
BSUM - t h e  first location of two-dimensional array of con- 

s t an t  vectors B 

1 - t he  number of column vectors 

DETERM - gives value of determinant (not used) 

IPIVOT - temporary storage 

INDEX - temporary storage 

11 - the  maximum order of A 

0 - a fac tor  used i n  computing determinant 

A t  the  re turn t o  the  ca l l ing  program, x i s  stored a t  BSUM. 

Sample Output 

A typ ica l  program output f o r  a i r  i s  given herein. p i s  i n  standard atmos- 
pheres, Us, U r ,  u2 a r e  i n  f t / s ec ,  T i s  i n  OK, and p i s  nondimensional- 

ized by 

a l ized  with t h e  exception of the  stagnation enthalpies which a re  i n  cm2/sec2. 
The sample computer print-out i s  as follows: 

slugs grams 5 = 1.936(10-3)--- = 10-3 -. Other quant i t ies  a re  nondimension- 
f t 3  cc 
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IkPbT FCR I h C I C E h T  SHCCK 

RHC-1 = C.12724344E C 1  P - 1  = C.Z955SSS9E C 1  US= 0.3CCCCOCCt C5 1-1 = b.3GCOCCCGE C3 

EETb 

h2 c 0 2  b 
0.76COCCCCE C C  C - I l C C C O C C t - C C  C-13CCCCCCE-CC 

bSSUPEC R I - C =  C.0555595SE C2 

CUTPLT 

U2 0 . 2 7 t 5 7 1 t 5 E  C5 NC. CF P P J O R  I T t K P T I C N S  = 5 

P KkC l/Z H / z n r  S I R  T Cl 

O.56904850E C? C . l t 2 9 4 2 6 9 €  0 2  C.56274641E C O  C.67112346E C 1  C - 4 3 1 1 6 7 C l t  0 2  C.12776147E 0 5  C.3132bC9CE C2 

F l N P L  X FRCP I T E R b T l C h  SPECIES 

C-7283tC74E-CZ 
C.C27?C5CEE C C  
0.369513CZt-CZ 

E- 
N 
N+ 

C.11379162E-CC 0 
C+ 
C 
C+ 

C.727CC819t -C l  A 
C-45645799E-C? A t  
C.lC58C238€-CC N2 
0 .54371 l tOE-C3 N 2 +  
C -  lC67344CE-C? 
C.55t3431CE-C2 
c . 4 1 4 c 5 4 7 7 t - c 3  

0 2  
hC 
hC+ 

0.12752569E-C4 c 2  
C . 3 4 ? ? ? 2 5 7 E - C i  C0 
C.559CCSt9t-CZ CN 
C.lC381566E-C5 c c 2  

SHCCK TLeE STPGLPTILN PCINT C P T P  IS CCPPLTEC FROP TbE FOLLGwING S T A N C I h G  SFCCK C P T P  

P R k C  1 / Z  l - / Z R T  S I R  T P 1  

C.102237CEE C5 C.e5t51168E C2 C.48t74144E-CC C.617823C9E Cl C . 4 6 1 1 7 C 3 1 t  C2 C.221t905bE CS C.31326C9CE C Z  

ShCCK TLPE STBGhPTICh PCINT ENTI-PLPV = C.75973347E I 2  

C L T P L T  

hG. O F  M P J G R  I T t & A T I ( I N S  = 4 PRESSLRE = C . 1 1 3 5 9 5 5 t E  C5 TECPERPTLRE = C.22522935E i 5  

1 / Z  = C.486257C4E-CC H l Z R T  = C.61796464E 2 1  RHC = C.93622>03E C2 S / R  = 5 . 4 6 1 1 7 2 1 3 €  122 H = C . 7 5 9 7 3 6 2 6 t  1 2  

F I k b L  X FRCP I T E K P T I C h  

C.55171te7E-Cl  
C.6653C537E C C  
C.38569783E-Cl 
0 .59941716E-01 
C.385S1915E-C2 
C . 4 7 ? 0 4 t 5 8 € - C I  
C.46228t lCE-CZ 
0.5C771533E-Cl 
C.64419228E-C2 
C.12483515E-Cl  
C. l l 5 2 C 3 4 0 E - C Z  

0 .?0234C67t -C3 
C.12518514E-Ci  
C.tZCC5485E-C7 

SPECIES 

E- 
N 
N+ 
c 
G +  
C 
C+ 
A 
A +  
N2 
N2+ 
02 
NC 
EuC+ 
c 2  
co  
CN 
CCL 
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REFLECTEC ShOCK 

ASSLICEC R l - C  = 0 .55555559E C2 

CUTPLT 

U-R= 0 .51858532E C4 NC. CF M A J O R  ITERATICXS = 5 

P Rl -C  1 / Z  H / Z R T  S / R  T P l  

0.1453586CE 0 5  C. lC315417E C3 C.4112CI6BE-CC C . 6 2 5 5 0 i 5 4 E  G I  0 . 4 7 7 C i 3 1 4 t  C2 U.ZS344627E C 5  c.31326C9CE C2 

F I N A L  X F R C P  ITERPTIClu 

C.11387013E-CI 
0 .64283480t  C C  
0 . 5 5 t O t 7 8 7 E - C I  
C.55334575E-C1 
O. t13075C5t -C2 
C.45581391E-Cl 
0.543651C6E-C2 . ~~ 

0 - 5 2 4 8 3 7 6 1 E - C l  
0.87725917E-C2 
O. t6348217C-C2 
c. l C 2 1 7 2 4 7 E - C 2  
C . l 8 2 2 5 2 3 5 t - C 4  

SPECIES 

E- 
N 
N+ 
0 
O i  
C 
C+ 
A 
A t  
& 2  
N2*  
c 2  
NO 
kC t 
c 2  
C O  
CN 
C C L  

I N  F L l G P l  STbChPTICh P C I N T  C A T &  15 CCFPUTEC FRCP T C E  I i V C I n E l Y T  SHOCK CLTPUT 

S T A G h A l l C h  EATI-PLPY = C.4Ct96681E 1 2  STALUdTlClV L h T H L P Y  = C . 4 3 1 1 6 7 C l t  i 2  

C L T P L T  

PRESSbHE = C . l C 1 1 9 1 4 4 E  C 4  l t ,4PERATLRE = C . 1 2 8 5 4 9 2 9 t  C 5  hC.  ( I F  PPJOR I T i H A T l C N 5  = 3 

l / Z  = C.5 t175306C C C  b / Z l t T  = C.67CC5274E C l  r(H0 = C.16882119E 5 2  S / H  = ? . 4 3 1 1 4 1 9 4 €  92 b = L.4CbS5124E 12 

F I N A L  X F R C P  I T E R I T I L h  SPECIES 

0.14532434E-C2 E- 
C.625CC783E c c  h: 
C.38074829t -CZ Nt 
0- 11364757E-CC 0 
0.39127855E-C3 o+ 
0.51C4Cl tCE-CI  C 
o . m 0 4 4 c e 2 ~ - c 2  C +  
0 . 1 2 5 C i 7 5 9 E - 0 1  A 

17555t -C3 0 2  
0 .556?7C62t -C2 NO 
0 . 4 1 5 5 8 2 5 2 t - C 3  
0.12763625E-C4 
0 - 3 3 4 9 7 7 9 0 t - 0 2  

NO+ 
c 2  
co  

0 .55765794E-02 CN 
0 .10233709E-05 c c 2  
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PHYSICAL CONSTANTS 

The physical constants required by the computer program for  use with the 
27 chemical species are as follows: 

Planck's constant, h, erg-sec . . . . . . . . . . . . . . . . .  6.62517 X 10-27 
Boltzmann constant, k, ergs/OK 
Universal gas constant, a ,  ergs/mole-OK . . . . . . . . . . . .  8.31469 x 107 
Reference pressure, Pref, dynes/cm2 . . . . . . . . . . . . . .  1.01325 x lo6 
Avogadro's number, NA, particles/mole . . . . . . . . . . . . .  6.02322 X 1023 
Speed of light, C, cm/sec . . . . . . . . . . . . . . . . . . .  2.99793 X 1O1O 

. . . . . . . . . . . . . . . .  1.38044 X 

The molecular weight and heat of formation of the 
given in the following table: 

chemical species are 

Species 

e- 
N 
N+ 
N++ 
0 
O+ 
0++ 
0- 
C 
C+ 
C++ 
C -  
A 
A+ 
A++ 
N2 

02 
02+ 
02- 

N2+ 

NO 
NO+ 
CO 
co+ 
CN 
co2 
N20 

i 

1" 

Mi 

5.4847 x 10-4 
14.008 
14.007 
14.007 
16.000 
15 - 999 
15 * 999 
16.001 
12.011 
12.010 
12.010 
12.012 
39.944 
39.943 
39 * 943 
28.016 
28.015 
32. ooo 
31 999 
32.001 
30.008 
30.007 
28.011 
28.010 
26.019 
44.011 
44.016 

fi 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

(..f:)i 

0 
4.70729 X 1012 
18.72607 
47.28829 
2.46741 
15.60389 
49.47996 
1.05410 
7.11238 
17.97182 

5.89944 

41.85170 

15.03336 
0 
11.62808 
- .96232 
.89860 

-1.13813 
12.38367 
4.56056 
-3.93146 
.84973 

41.49225 

0 
15.20235 

0 

9.82403 

* If electrons a re  included as a species, they must be assigned a value of 
1 f o r  the subscript  i; otherwise values of i may be assigned t o  species as 
desired.  
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The number of j t h  par t ic les  i n  i t h  species i s  shown i n  the following table:  

Species 

e' 
N 
N+ 
N++ 
0 
O+ 
0++ 
0- 
C 
C+ 
C++ 
C -  
A 
A+ 
A++ 
N 2  
N2+ 
02 
02+ 
02 - 
NO 
NO+ 
co 
co+ 
CN 
co2 
N2O 

i 

1" 

-~ 

N 

0 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
2 
0 
0 
0 
1 
1 
0 
0 
1 
0 
2 

- .  

0 

0 
0 
0 
0 
1 
1 
1 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
2 
2 
1 
1 
1 
1 
0 
2 
1 

- - .  

-_ . ~ 

t a i j  for - 
~ 

C 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 

.. 

A 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- e 

+1 
0 
-1 
-2 
0 
-1 
-2 
+1 
0 

-1 
-2 
+1 
0 
-1 
-2 
0 
-1 
0 
-1 
+1 
0 
-1 
0 
-1 
0 
0 
0 

~~ 

tValues of j for  the elements shown may be assigned as desired. * If  electrons are  included as  a species, they must be assigned a value of 
1 for the subscript i; otherwise values of i may be assigned t o  species as  
desired. 
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Spectroscopic constants and quant i t ies  f o r  t h e  27 species a re  a s  follows 
(values of q 2 c  and A i 2  being l i s ted  only where required):  

ipeci e z 

e- 

N 

- 

2 
- 

1 

1 
r 
C 

2 

4 

6 
'I 
E 
5 

1c 
11 
12 
13 
1 4  
15 
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 

F , 

- 

~ 

g i  2 
~ 

r- 
C 

4 
1c 

6 
12 
6 

12 
2 

20 
12 

4 
10 
6 

10 
18 
34 
56 
22 
16 
16 
54 
12 
-06 
-32 
-36 

6 
68 
30 
2 

10 
14 
- 

0 

0 
1922: 

8333C 
8618~ 
8814~ 
9358; 
9480C 
955oc 
9675; 
9681c 
978oc 
9966c 

10500~ 
10660~ 
10720~ 
107600 
~09600 
~09860 
L10350 
~11600 
L12200 
ti2310 
'12820 
-12910 
-13600 

-17000 

2884C 

LO 400C 
L0470C 

-13900 

3pe c i  e : 

N+ 

- 

2 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
1-9 
20 
2 1  
22 
23 
24 
25 
?6 
27 
28 
29 
50 

- 

- 

% 2 

5 

1 

1: 
4 

- 

E , 

E , 

E 
1 

12 

3 
18 
3 
9 
5 
1 

41 
16 
3 

12 
30 
2 1  
.53 
12 
12 
846 
37 
15 
15 
1 4  
5 

2 
J 

- 

0 
15316 
32687 
4716E 
9224: 

10922~ 
144185 
14900C 
1.55130 
164612 
166650 
168893 
170620 

178274 
187090 
189100 
190121 

203000 

110500 

218000 
220500 
223000 
226000 
?28000 

174212 

197200 

205700 

I14828 

230300 
134250 

5pe c i  e I 

N" 

- 

2 
- 

I 
L 

1 

t 

E 
5 

1 C  
11 
1; 
1: 
14 
1: 
1 6  
1 7  
1& 
15 
2c 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

C 

1 

- 

- 

g i l  

t 
1; 
1 c  

6 
4 

1 c  

6 
6 

1c 
12 
6 
2 

32 
4 

22 
1 4  
10 
30 
22 
22 
20 
48 
24 
32 
12 
22 
52 
2 

~ 

c 
C 

P 
C 

- 

E i  2 

0 

10102f 
131041 
14592( 

20307t 

23030' 
24569( 

5728( 

18680: 

22130; 

26724; 
28765~ 

30108€ 
29721C 

31050C 
31422L 
31755c 
52028E 
32104C 
52900~ 
3333oc 
33629~ 
53955c 
54300C 
54800C 
564000 
56862~ 

580700 

574000 
579000 

* If electrons a r e  included a s  a species, they must be assigned a value of 
1 f o r  the subscript  i; otherwise values of i may be assigned t o  species as 
de s i  red. 
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3-1 

3 
1 
5 
1 
3 
3 

15 
9 
5 
3 

36 
1.5 
15 
9 
9 

15 
5 
3 
5 

23 
15 
9 

15 
25 
15 
56 
56 

;pe c i  e s 

5 0  
159 
227 

1586e 
33792 
73768 
76795 
8663c 
8863c 
95476 
96226 
9742c 
97488 
99094 
9968c 
10000c 
101140 
102116 
102412 
102662 
102865 
102908 
103869 

105408 
106000 
107000 

104000 
105385 

0 

:iz 

io 
6 

12 
io 
12 
6 
2 
2 

42 
26 
2 

24 
80 
16 
18 
40 
20 
6 

32 
44 
84 
~ 1 6  
18 

72 
~ 6 6  
~ 3 4  
L42 
24 

10 

~ 

2 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

11 
12 
1-3 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

~ 

€ 1 2  

4 0  
26820 
40465 

120000 
165990 
185400 
189000 
195710 
203942 
207600 
212800 
226851 
230000 
232700 
233900 
239600 
245500 
248000 
250300 
251900 
254000 
255500 
256000 
258100 

261500 
265500 
270000 
276500 
283000 

259300 

ipecies 
- 

O+ 

~ 

2 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21  
22 
23 
24 
25 
26 
27 
28 
29 
30 
~ 

- 
2 
- 

1 
2 
3 
4 
5 
6 
7 

9 
0 

11 
12 
13 
1 4  
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

a 

- 

- 

si 2 

9 
5 
1 
5 

15 
9 
5 
3 
3 

12 
9 

26 
14 
1 

50 
10 
15 
1 
9 
12 
46 
48 

L58 
62 
90 

j58 
72 
511 
48 
15 

- 

~ 

2 

0 
20271 

60312 
120050 

187049 
197087 

270000 
283900 
294000 

313801 

43184 

142383 

210459 

303000 

327000 
332000 
338700 

350200 
343303 

357500 
365000 
370500 
380000 
394000 
398000 
403 400 
425000 
430000 
438000 
442710 
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9 
3 
9 
5 
1 
3 
1 
3 
9 

15 
5 

15 
1 

12 
61 
5 

12 
31 
15 
13 
7 
3 

30 
60 
7 

12 
18 
13 
34 

Ipecies 

0- 

C 

1 0  
52360 

1023.51 
137420 
145875 
1825~) 
238161 

258931 
259662 
269960 
276843 
309100 
311721 
318700 
322550 
324212 
328000 
333000 
337626 
340000 
341368 
343256 

346600 
348000 
376600 
381500 
384345 
386000 

247170 

345000 

~~ - 

2 
- 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
1-7 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
2 8  
29 
30 - 

I 2  
10 
2 
6 
6 

2 

6 
12 
20 

4 
10 
i o  
2 
6 

12 
i o  
20 
2 
6 

16 
32 
26 
4 

12 
i o  
30 
20 

2 

14 

~~ 

si 2 

6 

9 
5 
1 
5 
9 
3 

1.5 
3 

15 
3 
9 
5 
1 
9 
5 
9 

21 
18 
10 
9 

18 
12 
5 
1 

53 
LO3 
30 
6 

j03 
1-9 

~ 

~ 

6 0  
4303C 

96494 
74931 

10180~ 
110650 

116538 

131731 
135800 
136000 

150465 
157234 
162522 
167000 
168124 
168900 
173348 
175293 
178350 

182000 

186450 
188600 
195500 
196572 

11490 

119400 

142024 
145551 

179000 

184689 

Ei 2 

0 

0 
101gj 
21-64 
3373: 
6036( 
6198 

6885i 
6970( 
7074' 
7136: 
7261: 
7397t 
7525t 
7768: 
7813( 
7823( 
7832( 
7860( 
7931( 

8120( 
8177( 
8225: 
8380( 

6409( 

8040( 

8400( 
849k 
8540( 
8640( 
8650~ 

3pe c i  e d 

C+ 

- 

2 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
1.7 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

- 

3peciet 

C++ 

- 

2 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

LO 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 

- 
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ipecies 

C -  

A 

- 
2 
- 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
1.9 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 
- 

- 

;i 2 

6 

1 
5 
3 
1 
3 
3 
12 
8 
1 
8 
4 
4 

16 
8 

20 
16 
8 
3 

12 
8 
1 

16 
36 
56 
20 
32 
36 
56 

28 

- 

20 

- 

0 

0 
93144 
93731 
94354 
95400 

104102 
105500 
106150 
107054 
107220 
108000 
111280 

112900 
113550 

115000 
116660 
116960 

117563 
118530 

120250 
~0700 
121750 
122200 
122700 
123500 
124136 

111750 

114750 

117170 

119300 

ip e c i  e E 

A+ 

- 
2 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
I 2  
13 
14 
15 
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 

- 

- 

;i 2 

6 
2 

20 
12 
6 

28 
6 

12 
10 
10 
12 
30 
12 
2 

14 

- 

26 
38 
6 

40 
60 
62 
34 
-20 
84 
48 
18 
6 

?20 
50 
70 

- 

'i 2 

0 
108723 
132400 
134800 
138600 

147650 
148750 
150000 
155160 
158300 
161000 
1.67309 
170600 

174800 
179700 
183000 
186000 
190200 
192200 
194000 
196000 
200000 
205000 
208593 

215000 

142700 
145200 

173000 

210000 

220000 

jpecies 

A++ 

- 
2 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
I 2  
13 
14 
15 
16 
17 
18 
1-9 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

- 

- 
i 2 

5 
3 
1 
5 
1 
9 

10 
28 
15 
5 

15 
75 
15 
5 

18 
2 1  
27 
33 
46 
9 
5 

26 
50 
91. 
24 

127 
121 
~ 1 6  
111 
j24 

- 

- 

0 
1112 
1.570 

14010 
33267 
114400 

144650 
128000 

156950 
174375 
182000 
189500 
196600 
200000 
204700 
208300 
210800 
214500 
224500 
231500 
235000 
24000C 
246036 
25100c 
258000 
27000c 
27850c 
28200c 
28600~ 
30200c 
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- 

Species 

N2 

N2+ 

02 

02+ 

- 
02 

NO 

NO+ 

co 

co+ 

CN 

CQ2 

N2Q 

i 2 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 

1 
2 
3 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 

1 
2 
3 

1 

1 

gi 2 

1 
3 
6 
2 
1 
6 

2 
4 
2 
2 

3 
2 
1 
3 
1 
3 

4 
8 
4 
4 

4 
4 
4 

2 
2 
2 
4 
2 
4 
2 
4 

1 
6 
3 
6 
2 

1 
6 
3 
6 
2 
3 
1 

2 
4 
2 

2 
4 
2 

1 

1 

0 
49757 
59314 
68953 
70700 
87984 

0 
9020 
25570 
64550 

0 
7882 
13121 
35713 
36213 
49363 

0 
31500 
38300 
48100 

0 
13400 
24200 

0 
121 

44200 
45440 
53290 

60860 
60020 

0 

58523 
72384 
73084 

0 
48474 
55380 

64747 

86918 

0 
20407 
45634 

52376 

39982 

61785 

83831 

0 
9115 
25798 

0 

0 

nil 

5 - 725 
4.125 
4.687 
4.630 
4 235 
5.226 

5-531 
4.929 
5.966 
4.676 

4.137 
4.080 
4.004 

2.347 
2.341 

4.783 
3.156 
3.028 
3.673 

3.430 
2.767 
2.609 

2 970 

2.440 
2.440 
2.860 
1.609 
2.866 
2 - 859 
1.900 

2.866 

1.902 
1.801 
2.266 

2.766 

1.803 

2.962 
2.802 

2.831 

2.568 

2.845 

2.404 

2.405 
1.904 

2 * 303 

2 273 

2.7207 
2.4571 
2.8186 

1.121 

.6017 

9 2 1  

2343 - 9 
1446.5 
1719.6 
1625. g 
1518. o 
2018. 0 

2191.0 
1887.9 
2396.7 
2035.1 

1568.3 
1496.4 
1418.7 
796.5 

692.4 
633.3 

1859.9 
1025.3 
886.6 

1286. o 

547.0 

1890.1 
1889.7 
2358 - 3 
1030.1 
2301. o 
2380. o 
2357.8 
1200.7 

2360.8 
1725 * 5 
1210.5 
1132.4 
1585.6 

2156.8 

1208.5 
1130.2 

2070. o 
2199.1 
1548.5 
1706.3 

1801.55 

1179 7 

975 0 

1724.8 

1498.4 
2184.5 

2055.56 

667.3 

2143.88 

588.8 

%12 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
0 

667.3 

588.8 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
0 

1342.9 

1285.0 

924 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
0 

2349.3 

2223.8 
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( a )  Traveling normal shock. 

( b )  Reflected normal shock. 

( c )  Shock-tube stagnation point.  

\ 
(a) In-f l ight  stagnation point.  

Figure 1.- Flow configurations. 
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Figure 2.- Continued. 
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